Otwarty dostęp

Modeling, Analysis and Control of the Compass Gait Biped Robot and Extensions: A Review


Zacytuj

[1] ANDERSON, S. O. – WISSE, M., et al.: Powered bipeds based on passive dynamic principles, 5th IEEE-RAS Int. Conf. on Humanoid Robots, No. 2005 (2005) 110–116 Search in Google Scholar

[2] BEHNKE, S.: Online trajectory generation for omnidirectional biped walking, Proceedings 2006 IEEE Int. Conf. on Robotics and Automation, 2006. ICRA 2006., ISSN 1050-4729, No. 2006 (2006) 1597-1603 Search in Google Scholar

[3] CHEN H.: Passive dynamic walking with knees: A point foot model, Massachusetts Institute of Technology, No. 2007 (2007) 59 Search in Google Scholar

[4] CHEVALLEREAU, Ch. – DJOUDI, D. – GRIZZLE, J. W.: Stable bipedal walking with foot rotation through direct regulation of the zero moment point, IEEE Trans. on Robotics 24, No. 2 (2008) 390–40110.1109/TRO.2007.913563 Search in Google Scholar

[5] CHEW, Ch. – PRATT, G. A.: Dynamic bipedal walking assisted by learning, Robotica 20, No. 5 (2002) 477–49110.1017/S0263574702004290 Search in Google Scholar

[6] COLLINS, S. H. – WISSE, M. – RUINA, A.: A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees, Int. J. Robotics Res 20, No. 7 (2001) 607-61510.1177/02783640122067561 Search in Google Scholar

[7] McGEER, T.: Powered flight, child’s play, silly wheels and walking machines., Proc. 1989 Int. Conf. on Robotics and Automation, No. (1989) 1592–1597 Search in Google Scholar

[8] McGEER, T.: Passive Dynamic Walking, Int. J. Robotics Res. 9, No. 2 (1990) 62-8210.1177/027836499000900206 Search in Google Scholar

[9] McGEER, T.: Passive walking with knees, Robotics and Automation, Proc., IEEE Int. Conf., No. (1990) 1640–164510.1109/ROBOT.1990.126245 Search in Google Scholar

[10] GOSWAMI, A. – Thuilot, B., and Espiau, B.: Compass-like biped robot part I: Stability and bifurcation of passive gaits, INRIA, Research Report, No. RR-2996 (1996) Search in Google Scholar

[11] GRIZZLE, J. W. – CHEVALLEREAU, Ch. – SINNET, R. W. – AMES, A. D.: Models, feedback control, and open problems of 3D bipedal robotic walking., Automatica 50, No. 8 (2014) 1955–198810.1016/j.automatica.2014.04.021 Search in Google Scholar

[12] GUPTA, S. – KUMAR, A.: A brief review of dynamics and control of underactuated biped robot., Advanced Robotics 31, No. 12 (2017) 607–62310.1080/01691864.2017.1308270 Search in Google Scholar

[13] HAI, L. – ANTSAKLIS PANOS J.: Hybrid Dynamical Systems: An Introduction to Control and Verification, Foundations and Trends in Systems and Control 1, No. 1 (2014) 1-17210.1561/2600000001 Search in Google Scholar

[14] HAMILL, P.: A student’s guide to Lagrangians and Hamiltonians, Cambridge University Press, No. (2014) 17310.1017/CBO9781107337572 Search in Google Scholar

[15] HUSTON, R. L.: Multibody dynamics—modeling and analysis methods, Applied Mechanics Reviews 44, No. 3 (1991) 10910.1115/1.3119496 Search in Google Scholar

[16] FEYNMAN, R. P. – LEIGHTON, R. B. – SANDS, M.: The Feynman lectures on physics, Vol. I: The new millennium edition: mainly mechanics, radiation, and heat, Basic books 1, No. (2011) Search in Google Scholar

[17] GOLDSTEIN, H. – POOLE, C.P. – SAFKO, J.L.: Classical Mechanics: Pearson New Int. Edition, Pearson Education Limited, No. (Pearson Education Limited) 664 Search in Google Scholar

[18] GOLLIDAY, C. – HEMAMI, H.: An approach to analyzing biped locomotion dynamics and designing robot locomotion controls, IEEE Transactions on Automatic Control 22, No. 6 (1977) 963–97210.1109/TAC.1977.1101650 Search in Google Scholar

[19] GOSWAMI, A. – ESPIAU, B. – KERAMANE, A.: Limit cycles in a passive compass gait biped and passivity-mimicking control laws, Autonomous Robots 4, No. 3 (1997) 273–28610.1023/A:1008844026298 Search in Google Scholar

[20] GOSWAMI, A. – THUILOT, B. – ESPIAU, B.,: A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos, The International Journal of Robotics Research 17, No. 12 (1998) 1282-130110.1177/027836499801701202 Search in Google Scholar

[21] GOSWAMI, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point, The Int. Journal of Robotics Research 18, No. 6 (1999) 523–53310.1177/02783649922066376 Search in Google Scholar

[22] GOUAILLIER, D. – COLLETTE, C. – KILNER, C.: Omni-directional closed-loop walk for NAO,, No. 2010 10th IEEE-RAS Int. Conf. on Humanoid Robots, ISSN 2164-0580 (2010) 448-45410.1109/ICHR.2010.5686291 Search in Google Scholar

[23] HURMUZLU, Y. – GÉNOT, F.– BROGLIATO, B.: Modeling, stability and control of biped robots—a general framework, Automatica 40, No. 10 (2004) 1647–166410.1016/j.automatica.2004.01.031 Search in Google Scholar

[24] JADLOVSKÁ, A. – JADLOVSKÁ, S. – VOŠČEK, D.: Cyber-Physical System Implementation into the Distributed Control System., IFAC-PapersOnLine 49, No. 25 (2016) 31-3610.1016/j.ifacol.2016.12.006 Search in Google Scholar

[25] JADLOVSKÁ, S. – KOSKA, L. – KENTOŠ, M.: MATLAB-based Tools for Modelling and Control of Underactuated Mechanical Systems, Trans. on Electrical Engineering 6, No. 3 (2017) 56-6110.14311/TEE.2017.3.056 Search in Google Scholar

[26] KANE, T. R. – LEVINSON, D. A.: Dynamics, theory and applications, McGraw Hill, No. (1985) 379 Search in Google Scholar

[27] KOCHUWILA, S. – TRIPATHI, S. – SUDARSHAN, T. S. B.: Control of a Compass Gait Biped Robot Based on Partial Feedback Linearization, In Proc. of TAROS Conference FIRA RoboWorld Congress 29, No. 3 (2012)10.1007/978-3-642-32527-4_11 Search in Google Scholar

[28] KOSKA, L.: A Survey of Approaches for Modeling and Control of Effective Walking Robots., SCYR 2018 Proc. from Conference, No. (2018) 16–19 Search in Google Scholar

[29] KOSKA, L.: Contribution to Modeling and Control for Walking Robots Using Hybrid Systems, SCYR 2019 Proc. from Conference, No. (2019) 58–59 Search in Google Scholar

[30] KOSKA, L. – JADLOVSKÁ, S. – JADLOVSKÁ, A. – VOŠČEK, D.: Inverted pendulum with linear synchronous motor swing up using boundary value problem, Acta Polytechnica 59, No. 5 (2019)10.14311/AP.2019.59.0458 Search in Google Scholar

[31] KOSKA, L.: Modeling, analysis and simulation of the hybrid models of the walking robots, Dissertation prospectus, No. (2019) 73 Search in Google Scholar

[32] KUO, A. D.: Stabilization of lateral motion in passive dynamic walking, The Int. Journal of Robotics Research 18, No. 9 (1999) 917–93010.1177/02783649922066655 Search in Google Scholar

[33] LI, Q. – YANG, X.: New walking dynamics in the simplest passive bipedal walking model, Applied Mathematical Modelling 36, No. 11 (2012) 5262–527110.1016/j.apm.2011.12.049 Search in Google Scholar

[34] MOCHON, S. – McMAHON, T. A.: Ballistic walking, Journal of Biomechanics 13, No. 1 (1980) 49-5710.1016/0021-9290(80)90007-X Search in Google Scholar

[35] MORIMOTO, J. – CHENG, G.: A simple reinforcement learning algorithm for biped walking, IEEE Int. Conf. on Robotics and Automation 3, No. (2004)10.1109/ROBOT.2004.1307522 Search in Google Scholar

[36] MORIMOTO, J. – NAKANISHI, J. et al.: Poincare-map-based reinforcement learning for biped walking, Proc. of the 2005 IEEE Int. Conf. Robotics and Automation, No. (2005) 2381–238610.1109/ROBOT.2005.1570469 Search in Google Scholar

[37] MURRAY, R. M. – HAUSER, J.: A Case Study in Approximate Linearization: The Acrobot Example, Proc. of the American Control Conference, No. (1991) Search in Google Scholar

[38] MORRIS, B. – GRIZZLE, J. W.: Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots, IEEE Trans. on Automatic Control 54, No. 8 (2009) 1751–176410.1109/TAC.2009.2024563 Search in Google Scholar

[39] PEDRO, M. L. H. X.: Stable Walking Gaits for a Three-Link Planar Biped Robot With One Actuator, IEEE: Transactions on robotics 29, No. 3 (2013)10.1109/TRO.2013.2239551 Search in Google Scholar

[40] SOBOTKA, M.: Hybrid dynamical system methods for legged robot locomotion with variable ground contact, Technische Universit¨at München, No. (2007) Search in Google Scholar

[41] SPONG, M. W.: The swing up control problem for the Acrobot, IEEE Control Sys. Magazine 15, No. 1 (1995)10.1109/37.341864 Search in Google Scholar

[42] SPONG, M. W.: Passivity based control of the compass gait biped, Proc. of the IFAC World Congress, No. (1999) 19–2310.1016/S1474-6670(17)56086-3 Search in Google Scholar

[43] TEDRAKE, R. L.: Underactuated Robotics: Learning, Planning, and Control for Efficient and Agile Machines, Course Notes for MIT 6.832, Working draft edition, No. (2009) Search in Google Scholar

[44] TEDRAKE, R. et al.: ”Learning to walk in 20 minutes, Proc. of 14th Yale Workshop on Adaptive and Learning Systems 95585, No. (2005) 1939-1412 Search in Google Scholar

[45] VUKOBRATOVIĆ, M. – BOROVAC, B. – POTKONJAK, V.: ZMP: A review of some basic misunderstandings, Int. Journal of Humanoid Robotics 3, No. 02 (2006) 153–17510.1142/S0219843606000710 Search in Google Scholar

[46] WESTERVELT, E. R. – GRIZZLE, J. W. – KODITSCHEK, D. E.: Hybrid zero dynamics of planar biped walkers, IEEE Trans. on Automatic control 48, No. 1 (2003) 42–5610.1109/TAC.2002.806653 Search in Google Scholar

[47] WESTERVELT, E. R. – GRIZZLE, J. W. – CHEVALLEREAU, Ch. – CHOI, J. H. – MORRIS, B.: Feedback control of dynamic bipedal robot locomotion, CRC press 28, No. (2007) Search in Google Scholar

[48] YAMAGUCHI, J. et al.: Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking, Proc. 1999 IEEE Int. Conf. Robotics and Automation 1, No. (1999) Search in Google Scholar

[49] YOU, Z. – ZHANG, Z.: An overview of the underactuated biped robots, 2011 IEEE Int. Conf. on Information and Automation, No. (2011) 772–776 Search in Google Scholar

eISSN:
1338-3957
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Computer Sciences, Information Technology, Databases and Data Mining, Engineering, Electrical Engineering