Tsai, S.W., Wu, E.M., A general theory of strength for anisotropic materials. Journal of Composite Materials, 5(1) (1971) 58-80. https://doi.org/10.1177/00219983710050010610.1177/002199837100500106Search in Google Scholar
Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033) (1948) 281-297. https://doi.org/10.1098/rspa.1948.004510.1098/rspa.1948.0045Search in Google Scholar
Hoffman, O., The brittle strength of orthotropic materials. Journal of Composite Materials, 1(2) (1967) 200-206. https://doi.org/10.1177/00219983670010021010.1177/002199836700100210Search in Google Scholar
Jones, R.M., Mechanics of composite materials, 2018 CRC Press.10.1201/9781498711067Search in Google Scholar
Yeh, H.-L., Quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 22(6) (2003) 517-532. https://doi.org/10.1106/07316840302327410.1106/073168403023274Search in Google Scholar
Yeh, H.-L., Yeh, H.-Y., The modified quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 21(3) (2002) 279-289. https://doi.org/10.1177/073168440202100311010.1177/0731684402021003110Search in Google Scholar
Hashin, Z., Fatigue failure criteria for unidirectional fiber composites. University of Pennsylvania, Philadelphia. 1981.10.1115/1.3157744Search in Google Scholar
Norris, C., Strength of orthotropic materials subjected to combined stresses, United States Department Of Agriculture Forest Service. 1962.Search in Google Scholar
Hart-Smith, L., Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates. Composites Science and Technology, 58(7) (1998) 1151-1178. https://doi.org/10.1016/S0266-3538(97)00192-910.1016/S0266-3538(97)00192-9Search in Google Scholar
Sun, C.-T., Comparative evaluation of failure analysis methods for composite laminates, 1996.Search in Google Scholar
Davila, C.G., Camanho, P.P., Rose, C.A., Failure criteria for frp laminates. Journal of Composite Materials, 39(4) (2005) 323-345. https://doi.org/10.1177/002199830504645210.1177/0021998305046452Search in Google Scholar
Puck, A., Kopp, J., Knops, M., Guidelines for the determination of the parameters in puck’s action plane strength criterion. Composites Science and Technology, 62(3) (2002) 371-378. https://doi.org/10.1016/S0266-3538(01)00202-010.1016/S0266-3538(01)00202-0Search in Google Scholar
Catalanotti, G., Camanho, P., Marques, A., Three-dimensional failure criteria for fiber-reinforced laminates. Composite Structures, 95 (2013) 63-79. https://doi.org/10.1016/j.compstruct.2012.07.01610.1016/j.compstruct.2012.07.016Search in Google Scholar
Gutkin, R., Pinho, S., Review on failure of laminated composites: experimental perspective and modelling. 2016.Search in Google Scholar
Hill, R., The mathematical theory of plasticity. Vol. 11. 1998: Oxford University Press.Search in Google Scholar
Berthelot, J.-M., Composite materials: mechanical behavior and structural analysis. Mechanical Engineering Series. 1999: Springer.10.1007/978-1-4612-0527-2Search in Google Scholar
Azzi, V., Tsai, S.W., Anisotropic strength of composites. Experimental Mechanics, 5(9) (1965) 283-288.10.1007/BF02326292Search in Google Scholar
Kim, Y., Davalos, J.F., Barbero, E.J., Progressive failure analysis of laminated composite beams. Journal of Composite Materials, 30(5) (1996) 536-560. https://doi.org/10.1177/00219983960300050110.1177/002199839603000501Search in Google Scholar
Lezgy Nazargah, M., Meshkani, Z., An efficient partial mixed finite element model for static and free vibration analyses of fgm plates rested on two-parameter elastic foundations. Structural Engineering And Mechanics, An International Journal, 66(5) (2018.) 665-676.Search in Google Scholar
Lezgy Nazargah, M., A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates. Acta Mechanica, 227(12) (2016) 3429-3450. https://doi.org/10.1007/s00707-016-1676-410.1007/s00707-016-1676-4Search in Google Scholar
Lezgy Nazargah, M., Salahshuran, S., A new mixed-field theory for bending and vibration analysis of multi-layered composite plate. Archives Of Civil And Mechanical Engineering, 18(3) (2018) 818-832. https://doi.org/10.1016/j.acme.2017.12.00610.1016/j.acme.2017.12.006Search in Google Scholar
Irhirane, E.H., Echaabi, J., Aboussaleh, M., Hattabi, M., Trochu, F., Matrix and fibre stiffness degradation of a quasi-isotrope graphite epoxy laminate under flexural bending test. Journal of Reinforced Plastics and Composites, 28(2) (2009) 201-223. https://doi.org/10.1177/073168440708421310.1177/0731684407084213Search in Google Scholar
Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M., Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories. Journal of Reinforced Plastics and Composites, 31(21) (2012) 1467-1487. https://doi.org/10.1177/073168441245633010.1177/0731684412456330Search in Google Scholar
Hasan, Z., Muliana, A., Failure and deformation analyses of smart laminated composites. Mechanics of Composite Materials, 48(4) (2012) 391-404. https://doi.org/10.1007/s11029-012-9285-310.1007/s11029-012-9285-3Search in Google Scholar
Daniel, I.M., Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica, 50(2) (2015) 429-442. https://doi.org/10.1007/s11012-013-9829-110.1007/s11012-013-9829-1Search in Google Scholar
Lezgy-Nazargah, M., Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams. Acta Mechanica, 228(5) (2017) 1923-1940. https://doi.org/10.1007/s00707-017-1807-610.1007/s00707-017-1807-6Search in Google Scholar
Ounis, H., Tati, A., Benchabane, A., Thermal buckling behavior of laminated composite plates: a finite-element study. Frontiers of Mechanical Engineering, 9(1) (2014) 41-49. https://doi.org/10.1007/s11465-014-0284-z10.1007/s11465-014-0284-zSearch in Google Scholar
Khechai, A., Tati, A., Guettala, A., Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes. Frontiers of Mechanical Engineering, 9(3) (2014) 281-294. https://doi.org/10.1007/s11465-014-0307-910.1007/s11465-014-0307-9Search in Google Scholar