Otwarty dostęp

EBSD Characterization of Bobbin Friction Stir Welding of AA6082-T6 Aluminium Alloy


Zacytuj

1. Thomas W.; Nicholas E.; Needham J.; Murch M.; Temple-Smith P.; Dawes C. Friction stir butt welding, international patent application no. PCT/GB92 Patent application 1991.Search in Google Scholar

2. Thomas W.; Nicholas, E. Friction stir welding for the transportation industries. Materials & Design 1997, 18, 269-273.Search in Google Scholar

3. Tamadon A.; Pons D.; Sued K.; Clucas D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals 2018, 8, 375.10.3390/met8060375Search in Google Scholar

4. Threadgill P.; Leonard A.; Shercliff H.; Withers, P. Friction stir welding of aluminium alloys. International Materials Reviews 2009, 54, 49-93.Search in Google Scholar

5. Threadgill P.L.; Ahmed M.; Martin J.P.; Perrett J.G.; Wynne B.P. In The use of bobbin tools for friction stir welding of aluminium alloys, Materials Science Forum, 2010; Trans Tech Publ: pp 1179-1184.10.4028/www.scientific.net/MSF.638-642.1179Search in Google Scholar

6. Hilgert J.; Hütsch L.L.; Dos Santos J.; Huber N. In Material flow around a bobbin tool for friction stir welding, Excerpt from the Proceedings of the COMSOL Conference, 2010.Search in Google Scholar

7. Hilgert J.; Schmidt H.; Dos Santos J.; Huber, N. Thermal models for bobbin tool friction stir welding. Journal of Materials Processing Technology 2011, 211, 197-204.Search in Google Scholar

8. Durga B.S. Research scholar optimization of friction stir welding parameters (tool material, tool geometry and tool speed) on aluminium alloys 6061 using taguchi method” advanced research journals of science and technology (arjst) 5.2 (2018): 385-407. INTRODUCTION Friction stir welding (FSW): Friction Stir Welding (FSW), a solid state welding invented by The Welding Institute (TWI) in 1991.Search in Google Scholar

9. Iwaszko J., Kudła K. Characterization of Cu/SiC surface composite produced by friction stir processing. Bulletin of the Polish Academy of Sciences: Technical Sciences 2020, 68, 3, 555-564.Search in Google Scholar

10. Kubit A.; Bucior M.; Kluz R.; Ochał K. Application of the 3d digital image correlation to the analysis of deformation of joints welded with the FSW method after shot peening. Advances in Materials Science 2019, 19, 57-66.Search in Google Scholar

11. Khan N.Z.; Siddiquee A.N.; Khan Z.A.; Shihab S.K. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. Journal of Alloys and Compounds 2015, 648, 360-367.Search in Google Scholar

12. Tamadon A.; Pons D.; Sued K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals 2018, 8, 33.10.3390/met8010033Search in Google Scholar

13. Sued M.; Tamadon A.; Pons D. Material flow visualization in bobbin friction stir welding by analogue model. Proceedings of Mechanical Engineering Research Day 2017, 2017, 1-2.Search in Google Scholar

14. Trueba L.; Torres M.A.; Johannes L.B.; Rybicki D. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. Int. J. Mater. Form. 2018, 11, 559-570.Search in Google Scholar

15. Tamadon A.; Pons D.; Sued K.; Clucas D. Development of metallographic etchants for the microstructure evolution of A6082-T6 BFSW welds. Metals 2017, 7, 423.10.3390/met7100423Search in Google Scholar

16. Sued M.; Pons D.; Lavroff J.; Wong E.-H. Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process. Materials & Design (1980-2015) 2014, 54, 632-643.Search in Google Scholar

17. Uthayakumar M.; Balasubramanian V.; Rani A.M.A.; Hadzima B. In Effects of welding on the fatigue behaviour of commercial aluminum AA-1100 joints, IOP Conference Series: Materials Science and Engineering, 2018; IOP Publishing: p 012065.10.1088/1757-899X/346/1/012065Search in Google Scholar

18. Kumar S.S.; Ravisankar B.; Raviram R.D. In Evaluation of mechanical properties of friction stir welded commercially pure aluminium, MATEC Web of Conferences, 2018; EDP Sciences: p 04003.10.1051/matecconf/201817204003Search in Google Scholar

19. Murr L.; Liu G.; McClure J. Dynamic recrystallisation in friction-stir welding of aluminium alloy 1100. Journal of Materials Science Letters 1997, 16, 1801-1803.Search in Google Scholar

20. Murr L.; Flores R.; Flores O.; McClure J.; Liu G.; Brown D. Friction-stir welding: Microstructural Characterization. Material Research Innovations 1998, 1, 211-223.Search in Google Scholar

21. Liechty B.; Webb B. Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools and Manufacture 2008, 48, 1474-1485.Search in Google Scholar

22. Grujicic M.; Ramaswami S.; Snipes J.S.; Avuthu V.; Galgalikar R.; Zhang Z. Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the monte carlo simulation method. J Mater Eng Perform 2015.10.1007/s11665-015-1635-6Search in Google Scholar

23. Ramulu P.J.; Narayanan R.G.; Kailas S.V.; Reddy J. Internal defect and process parameter analysis during friction stir welding of al 6061 sheets. The International Journal of Advanced Manufacturing Technology 2013, 65, 1515-1528.Search in Google Scholar

24. Shrivastava A.; Pfefferkorn F.E.; Duffie N.A.; Ferrier N.J.; Smith C.B.; Malukhin K.; Zinn M. Physics-based process model approach for detecting discontinuity during friction stir welding. The International Journal of Advanced Manufacturing Technology 2015, 79, 605-614.Search in Google Scholar

25. Hilgert J.; Dos Santos J.; Huber N. Shear layer modelling for bobbin tool friction stir welding. Science and Technology of Welding and Joining 2012, 17, 454-459.Search in Google Scholar

26. Dong P.; Dou Z.; Zhang P. 3D numerical simulation of temperature and stress evolution in friction stir welding of aluminum alloy. Hanjie Xuebao 2015, 36, 71-74.Search in Google Scholar

27. Thomas W.; Wiesner C.; Marks D.; Staines D. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Science and Technology of Welding and Joining 2009, 14, 247-253.Search in Google Scholar

28. Fonda R.; Knipling K. Texture development in friction stir welds. Science and Technology of Welding and Joining 2011, 16, 288-294.Search in Google Scholar

29. Fonda R.; Knipling K. Texture development in near-α ti friction stir welds. Acta Materialia 2010, 58, 6452-6463.Search in Google Scholar

30. Fonda R.; Bingert J.; Colligan K. Development of grain structure during friction stir welding. Scripta Materialia 2004, 51, 243-248.Search in Google Scholar

31. Fonda R.; Bingert J. Texture variations in an aluminum friction stir weld. Scripta Materialia 2007, 57, 1052-1055.Search in Google Scholar

32. Fonda R.; Knipling K.; Bingert J. Microstructural evolution ahead of the tool in aluminum friction stir welds. Scripta Materialia 2008, 58, 343-348.Search in Google Scholar

33. Pal S.; Phaniraj M.P. Determination of heat partition between tool and workpiece during FSW of ss304 using 3d cfd modeling. Journal of Materials Processing Technology 2015, 222, 280-286.Search in Google Scholar

34. Fonda R.; Reynolds A.; Feng C.; Knipling K.; Rowenhorst D. Material flow in friction stir welds. Metallurgical and Materials Transactions A 2013, 44, 337-344.Search in Google Scholar

35. Fonda R.; Knipling K.; Rowenhorst D. EDSB analysis of friction stir weld textures. JOM 2014, 66, 149-155.Search in Google Scholar

36. Tamadon A. Characterization of flow-based bobbin friction stir welding process. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2019.Search in Google Scholar

37. Sued M.K. Fixed bobbin friction stir welding of marine grade aluminium. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2015.Search in Google Scholar

38. Wen Q.; Li W.; Gao Y.; Yang J.; Wang F. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy. The International Journal of Advanced Manufacturing Technology 2019, 100, 2679-2687.Search in Google Scholar

39. Entringer J.; Meisnar M.; Reimann M.; Blawert C.; Zheludkevich M.; Dos Santos J.F. The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded alcu-li alloy. Materials Letters 2019, 2, 100014.10.1016/j.mlblux.2019.100014Search in Google Scholar

40. Li Y.; Sun D.; Gong W. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welded 6082-T6 aluminum alloy. Metals 2019, 9, 894.10.3390/met9080894Search in Google Scholar

41. Tamadon A.; Pons D.J.; Clucas D. Thermomechanical performance of bobbin tool design as an innovative variant for friction stir welding. In Manufacturing and Design Conference (MaD 2019) Auckland, New Zealand, 2019.Search in Google Scholar

42. Tamadon A.; Pons D.; Sued M.; Clucas D.; Wong E. In Analogue modelling of bobbin tool friction stir welding, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.Search in Google Scholar

43. Tamadon A.; Pons D.; Sued M.; Clucas D.; Wong E. In Preparation of plasticine material for analogue modelling, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.Search in Google Scholar

44. Tamadon A.; Pons D.J.; Clucas D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation 2020, 3, 2.10.3390/asi3010002Search in Google Scholar

45. Tamadon A.; Pons D.J.; Clucas D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics 2020, 1, 3-19.Search in Google Scholar

46. Cruz-Gandarilla F.; Bolmaro R.; Mendoza-León H.; Salcedo-Garrido A.; Cabañas-Moreno J. Study of recovery and first recrystallisation kinetics in CGO Fe3% si steels using misorientation- derived parameters (EBSD). Journal of Microscopy 2019, 275, 133-148.Search in Google Scholar

47. Zolotorevsky N.Y.; Rybin V.; Matvienko A.; Ushanova E.; Philippov S. Misorientation angle distribution of deformation-induced boundaries provided by their EBSD-based separation from original grain boundaries: Case study of copper deformed by compression. Materials Characterization 2019, 147, 184-192.Search in Google Scholar

48. Zhang L.; Wang X.; Wei X. Evolution of grain structure and texture for 6082-T6 aluminum alloy during friction stir welding. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2019, 34, 397-403.Search in Google Scholar

49. Tamadon A.; Pons D.J.; Clucas D.; Sued K. Texture evolution in AA6082-T6 BFSW welds: Optical microscopy and EBSD characterisation. Materials 2019, 12, 3215.10.3390/ma12193215680405131581446Search in Google Scholar

50. Pradeep S., Sharma S. K., Pancholi V. Microstructural and mechanical characterization of friction stir processed 5086 aluminum alloy. Materials Science Forum 2012, 710, 253-257.10.4028/www.scientific.net/MSF.710.253Search in Google Scholar

51. Tripathi A.; Zaefferer S. On the spatial resolution of EBSD in magnesium. arXiv preprint arXiv:1906.10055 2019.Search in Google Scholar

52. Wang J.-Y.; Jiang H.-T.; Duan X.-G.; Lin H.-T.; Qiu P.; Mi Z.-L. Orientation and microstructure topology-governed crack propagation behavior in AA7021 aluminum alloys during uniaxial tension. Materials Science and Engineering: A 2019, 739, 254-263.Search in Google Scholar

53. Reznik,P.; Zorina M.; Lobanov M. Role of crystallographic misorientations in the evolution of texture in FCC metals. Materials Today: Proceedings 2019, 19, 1875-1879.Search in Google Scholar

54. Hong C. In Visualization of low-misorientation dislocation structures from orientation data using customized all-euler maps, IOP Conference Series: Materials Science and Engineering 2019; IOP Publishing: p 012033.10.1088/1757-899X/580/1/012033Search in Google Scholar

55. Dhondt M.; Aubert I.; Saintier N.; Olive J.-M. Intergranular stress corrosion cracking of friction stir welded nugget on a 2050-t8 aluminum alloy. Advances in Materials Science 2011, 11, 43-50.Search in Google Scholar

56. Tashkandi M.; Al-Jarrah J.; Ibrahim M. Increasing of the mechanical properties of friction stir welded joints of 6061 aluminum alloy by introducing alumina particles. Advances in Materials Science 2017, 17, 29-40.Search in Google Scholar

57. Dudzik K.; Jurczak W. Influence of friction stir welding on corrosion properties of AW-7020M alloy in sea water. Advances in Materials Science 2015, 15, 7-13.Search in Google Scholar

58. Borisova Y.; Kalinenko A.; Yuzbekova D.; Mogucheva A. In The dynamic Recrystallisation behavior in al-mg alloys, Journal of Physics: Conference Series, 2019; IOP Publishing: p 012050.10.1088/1742-6596/1270/1/012050Search in Google Scholar

59. Yang C.; Wu C.; Shi L. Phase-field modelling of dynamic Recrystallisation process during friction stir welding of aluminium alloys. Science and Technology of Welding and Joining 2019, 1-14.10.1080/13621718.2019.1706261Search in Google Scholar

60. Zhang C.; Wang C.; Guo R.; Zhao G.; Chen L.; Sun W.; Wang X. Investigation of dynamic Recrystallisation and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation. Journal of Alloys and Compounds 2019, 773, 59-70.Search in Google Scholar

61. Tamadon A.; Pons D.J.; Clucas D.; Sued K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals 2019, 9, 1059.10.3390/met9101059Search in Google Scholar

62. Khajehzadeh M.; Ehsani N.; Baharvandi H.R.; Abdollahi A.; Bahaaddini M.; Tamadon A. Thermodynamical evaluation, microstructural characterization and mechanical properties of B4C–TiB2 nanocomposite produced by in-situ reaction of nano-TiO2. Ceramics International 2020, 46, 26970-26984.Search in Google Scholar

63. Bahaaddini M.; Baharvandi H.R.; Ehsani N.; Khajehzadeh M.; Tamadon A. Pressureless sintering of lps-SiC (SiC-Al2O3-Y2O3) composite in presence of the B4C additive. Ceramics International 2019, 45, 13536-13545.Search in Google Scholar

64. Tamadon A.; Pons D.J.; Clucas D. AFM characterization of stir-induced micro-flow features within the AA6082-T6 BFSW welds. Technologies 2019, 7, 80.10.3390/technologies7040080Search in Google Scholar

65. Du C.; Pan Q.; Chen S.; Tian S. Effect of rolling on the microstructure and mechanical properties of 6061-T6 DS-FSW plate. Materials Science and Engineering: A 2020, 772, 138692.10.1016/j.msea.2019.138692Search in Google Scholar

66. Li G.; Zhou L.; Luo L.; Wu X.; Guo N. Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy. Journal of Materials Research and Technology 2019, 8, 4115-4129.Search in Google Scholar

67. He X.; Pan Q.; Li H.; Huang Z.; Liu S.; Li K.; Li X. Effect of artificial aging, delayed aging, and pre-aging on microstructure and properties of 6082 aluminum alloy. Metals 2019, 9, 173.10.3390/met9020173Search in Google Scholar

68. Tamadon A.; Pons D.J.; Clucas D. Microstructural study on thermomechanical behaviour of 6082-T6 aluminium BFSW weld plates. In Materials@UC 2018, Christchurch, New Zealand, 2018.Search in Google Scholar

69. Tamadon A.; Baghestani A.; Bajgholi M.E. Influence of WC-based pin tool profile on microstructure and mechanical properties of AA1100 FSW welds. Technologies 2020, 8, 34.10.3390/technologies8020034Search in Google Scholar

70. Tamadon A.; Pons D.; Clucas D. Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method. Advances in Materials Science 2020, 20, 56-70.Search in Google Scholar

71. Tamadon A.; Abdali M.; Pons D.; Clucas D. Characterization of dissimilar Al-Cu BFSW welds; interfacial microstructure, flow mechanism and intermetallics formation. Advances in Materials Science 2020, 20, 52-78.Search in Google Scholar

eISSN:
2083-4799
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials