1. bookTom 20 (2020): Zeszyt 1 (March 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-4799
Pierwsze wydanie
23 Sep 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Research of 316L Metallic Powder for Use in SLM 3D Printing

Data publikacji: 13 Apr 2020
Tom & Zeszyt: Tom 20 (2020) - Zeszyt 1 (March 2020)
Zakres stron: 5 - 15
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-4799
Pierwsze wydanie
23 Sep 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Cruz V., Chao Q., Birbilis N., Fabijanic D., Hodgson P. D., & Thomas S.: Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corrosion Science, 164 (2020), 108314.10.1016/j.corsci.2019.108314Search in Google Scholar

2. Larimian T., Kannan M., Grzesiak D., AlMangour B., & Borkar T.: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A, (2020), 770, 138455.Search in Google Scholar

3. Simmons J. C., Chen X., Azizi A., Daeumer M. A., Zavalij P. Y., Zhou G., & Schiffres S. N.: Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel. Additive Manufacturing, 32 (2020), 100996.10.1016/j.addma.2019.100996Search in Google Scholar

4. Karapatis P. A.: Sub-process approach of selective laser sintering. PhD thesis, Ecole Polytechnique federal de Lausanne, (2002).Search in Google Scholar

5. Meiners W.: Direktes Selektives Laser Sintern einkomponentiger metallisher Werkstoffe. PhD thesis, Rheinisch-Westfaelische Technische Hochschule Aachen, (1999).Search in Google Scholar

6. Ni X., Kong D., Wu W., Zhang L., Dong C., He B., Zhu D.: Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds. Journal of Materials Engineering and Performance, 27(7), (2018), 3667-3677.10.1007/s11665-018-3446-zSearch in Google Scholar

7. Arrizubieta J. I., Ukar O., Ostolaza M., & Mugica A.: Study of the environmental implications of using metal powder in additive manufacturing and its handling. Metals, 10(2), (2020), 261.10.3390/met10020261Search in Google Scholar

8. Slowntiski J. A., Garboczsi E. J.: Metrology needs for metal additive manufacturing powders. JOM, 67(3), (2015), 538-543.10.1007/s11837-014-1290-7Search in Google Scholar

9. ISO/ASTM 52900:2015. Additive manufacturing - General principles - Terminology.Search in Google Scholar

10. Pinto F. C., Souza Filho I. R., Sandim M. J. R., & Sandim H. R. Z.: Defects in parts manufactured by selective laser melting caused by δ-ferrite in reused 316L steel powder feedstock. Additive Manufacturing, 31, (2020), 100979.10.1016/j.addma.2019.100979Search in Google Scholar

11. SS 316L - 047: Powder for additive manufacturing. RENISHAW: apply innovation. United Kingdom: Renishaw, (2015).Search in Google Scholar

12. Zhong C., Biermann T., Gasser A., Poprawe, G.: Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition. Journal of Laser Applications, (2015), 27(4), 042003-1-042003-8.Search in Google Scholar

13. Markusson L.: Powder Characterization for Additive Manufacturing Processes. Master thesis. Luleå University of Technology, (2017).Search in Google Scholar

14. Hajnys J.: Research into the effect of finishing operations on modification of utility properties of components produced by additive. PhD thesis. VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, (2019).Search in Google Scholar

15. Shi W., Wang P., Liu Y., Hou Y., & Han G. : Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness. Powder Technology, 360, (2020), 151-164.10.1016/j.powtec.2019.09.059Search in Google Scholar

16. Dursun G., Ibekwe S., Li G., Mensah P., Joshi G., & Jerro D.: Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting. Materials Today: Proceedings, (2020) (in press).10.1016/j.matpr.2019.12.061Search in Google Scholar

17. Oh W. J., Lee W. J., Kim M. S., Jeon J. B., & Shim D. S.: Repairing additive-manufactured 316L stainless steel using direct energy deposition. Optics & Laser Technology, 117, (2019), 6-17.10.1016/j.optlastec.2019.04.012Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo