Otwarty dostęp

Effect of Storage Conditions of Rutile Flux Cored Welding Wires on Properties of Welds


Zacytuj

1. Wang K., Lu Q., Yi Y., Yi J., Niu B., Jiang Z., Ma J.: Effects of welding heat input on microstructure and electrochemical behavior of flux-cored arc-welded Q690 HSLA steel. Advances in Materials Science and Engineering (2018) 7484025.10.1155/2018/7484025Search in Google Scholar

2. Ferreira M.L.R., Silva C.A.F.D., Pardal J.M., Tavares S.S.M.: Influence of shielding gas in FCAW process welding of UNS S31803 with E2209-T1/4 wire. Soldagem & Inspeção 23(3) (2018) 309-325.10.1590/0104-9224/si2303.02Search in Google Scholar

3. Rodrigues L.A., Borges D.J., Baia P.E., Freitas E.N., Braga E.M.: Welding procedures influence analysis on the residual stress distribution and distortion of stiffened panels welded via robotized FCAW. Thin-Walled Structures 141 (2019) 175-183.10.1016/j.tws.2019.03.055Search in Google Scholar

4. Urbański T., Graczyk T., Taraska M., Iwańkowicz R.: Assessment of technological usefulness of panel production line in shipbuilding process. Polish Maritime Research 25(s1) (2018) 134-144.10.2478/pomr-2018-0034Search in Google Scholar

5. de Sousa Lins A., de Souza L.F.G., Fonseca M.C.: Characterization of mechanical properties and residual stress in API 5L X80 steel welded joints. Journal of Materials Engineering and Performance 27(1) (2018) 124-137.10.1007/s11665-017-3090-zSearch in Google Scholar

6. Mu W., Li Y., Cai Y., Wang M., Hua X.: The cryogenic low-cycle fatigue performance of 9% Ni steel joint made by flux cored arc welding. Materials Characterization 151 (2019) 27-37.10.1016/j.matchar.2019.02.039Search in Google Scholar

7. Arun D., Ramkumar K.D., Vimala R.: Multi-pass arc welding techniques of 12 mm thick super-duplex stainless steel. Journal of Materials Processing Technology 271 (2019) 126-143.10.1016/j.jmatprotec.2019.03.031Search in Google Scholar

8. Winczek J., Gucwa M., Mičian M., Koňár R., Parzych S.: The evaluation of the wear mechanism of high-carbon hardfacing layers. Archives of Metallurgy and Materials 64(3) (2019) 1111-1115.10.24425/amm.2019.129502Search in Google Scholar

9. Świerczyńska A., Fydrych D., Rogalski G.: Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy 42(38) (2017) 24532-24540.10.1016/j.ijhydene.2017.07.225Search in Google Scholar

10. Yang Q., Han Y., Jia C., Wu J., Dong S., Wu C.: Impeding effect of bubbles on metal transfer in underwater wet FCAW. Journal of Manufacturing Processes 45 (2019) 682-689.10.1016/j.jmapro.2019.08.013Search in Google Scholar

11. Wang J., Sun Q., Pan Z., Yang J., Feng J.: Effects of welding speed on bubble dynamics and process stability in mechanical constraint-assisted underwater wet welding of steel sheets. Journal of Materials Processing Technology 264 (2019) 389-401.10.1016/j.jmatprotec.2018.09.022Search in Google Scholar

12. Guo N., Zhang X., Xu C., Chen H., Fu Y., Cheng Q.: Effect of parameters change on the weld appearance in stainless steel underwater wet welding with flux-cored wire. Metals 9(9) (2019) 951.10.3390/met9090951Search in Google Scholar

13. Pitrun M., Nolan D.U., Dunne D.: Diffusible hydrogen content in rutile flux-cored arc welds as a function of the welding parameters. Welding in the World 48(1-2) (2004) 2-13.10.1007/BF03266408Search in Google Scholar

14. Schaupp T., Rhode M., Kannengiesser T.: Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process. Welding in the World 62(1) (2018) 9-18.10.1007/s40194-017-0535-9Search in Google Scholar

15. Bracarense A.Q., Souza R., Costa M.C.M., Faria P.E., Liu S.: Welding current effect on diffusible hydrogen content in flux cored arc weld metal. Journal of the Brazilian Society of Mechanical Sciences 24(4) (2002) 278-285.10.1590/S0100-73862002000400005Search in Google Scholar

16. Lee M., Cho K., Kim Y., Kang N.: Effect of martensite on cold cracking in 600-MPa grade flux-cored arc weld metals using the Y-groove test. Welding in the World 59(5) (2015) 647-654.10.1007/s40194-015-0240-5Search in Google Scholar

17. Alipooramirabad H., Paradowska A., Ghomashchi R., Reid M.: Investigating the effects of welding process on residual stresses, microstructure and mechanical properties in HSLA steel welds. Journal of Manufacturing Processes 28 (2017) 70-81.10.1016/j.jmapro.2017.04.030Search in Google Scholar

18. Harwig D.D., Longenecker D.P., Cruz J.H.: Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas shielded flux cored arc welds. Welding Journal 78 (1999) 314-321.Search in Google Scholar

19. Fydrych D., Świerczyńska A., Tomków J.: Diffusible hydrogen control in flux cored arc welding process. Key Engineering Materials 597 (2014) 171-178.10.4028/www.scientific.net/KEM.597.171Search in Google Scholar

20. Świerczyńska A., Fydrych D., Landowski M., Rogalski G., Łabanowski J.: Hydrogen embrittlement of X2CrNiMoCuN25-6-3 super duplex stainless steel welded joints under cathodic protection. Construction and Building Materials 238 (2020) 117697.10.1016/j.conbuildmat.2019.117697Search in Google Scholar

21. Świerczyńska A., Fydrych D., Łabanowski J.: The effect of welding conditions on diffusible hydrogen content in deposited metal. Solid State Phenomena 183 (2012) 193-200.10.4028/www.scientific.net/SSP.183.193Search in Google Scholar

22. Fydrych D., Łabanowski J.: An experimental study of high-hydrogen welding processes. Revista de Metalurgia 51(4) (2015) 10-3989.10.3989/revmetalm.055Search in Google Scholar

23. Reisgen U., Willms K., Wieland S.: Influence of storage conditions on aluminum 4043A welding wires. Welding Journal 96(6) (2017) 220-227.Search in Google Scholar

24. Tomków J., Fydrych D., Rogalski G., Łabanowski J.: Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Revista de Metalurgia 55 (2019) e140.Search in Google Scholar

25. Barrera O., Bombac D., Chen Y., Daff T.D., Galindo-Nava E., Gong P., Liverani C.: Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. Journal of Materials Science 53(9) (2018) 6251-6290.10.1007/s10853-017-1978-5Search in Google Scholar

26. Wasim M., Djukic M.B.: Hydrogen embrittlement of low carbon structural steel at macro-, micro-and nano-levels. International Journal of Hydrogen Energy (2020) (In press).10.1016/j.ijhydene.2019.11.070Search in Google Scholar

27. Fu H., Wang W., Chen X., Pia G., Li J.: Fractal and multifractal analysis of fracture surfaces caused by hydrogen embrittlement in high-Mn twinning/transformation-induced plasticity steels. Applied Surface Science 470 (2019) 870-881.10.1016/j.apsusc.2018.11.179Search in Google Scholar

28. Li L., Song B., Cai Z., Liu Z., Cui X.: Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel. Materials Science and Engineering: A 742 (2019) 712-721.10.1016/j.msea.2018.09.048Search in Google Scholar

29. Xia D.H., Song S., Qin Z., Hu W., Behnamian Y.: Electrochemical probes and sensors designed for time-dependent atmospheric corrosion monitoring: fundamentals, progress, and challenges. Journal of The Electrochemical Society 167(3) (2020) 037513.10.1149/2.0132003JESSearch in Google Scholar

30. Morcillo M., Díaz I., Cano H., Chico B., De la Fuente D.: Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts. Construction and Building Materials 213 (2019) 723-737.10.1016/j.conbuildmat.2019.03.334Search in Google Scholar

31. Li X., Wang X., Wang L., Sun Y., Zhang B., Li H., ..., Hou B.: Corrosion behavior of Q235 steel in atmospheres containing SO2 and NaCl. Journal of Materials Engineering and Performance 28(4) (2019) 2327-2334.10.1007/s11665-019-03984-6Search in Google Scholar

32. Łatka L., Chicot D., Cattini A., Pawłowski L., Ambroziak A.: Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surface and Coatings Technology 220 (2013) 131-139.10.1016/j.surfcoat.2012.07.025Search in Google Scholar

33. Chmielewski T., Siwek P., Chmielewski M., Piątkowska A., Grabias A., Golański D.: Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases. Metals 8(12) (2018) 1059.10.3390/met8121059Search in Google Scholar

34. Szala M., Walczak, M., Pasierbiewicz K., Kamiński, M.: Cavitation erosion and sliding wear mechanisms of AlTiN and TiAlN films deposited on stainless steel Substrate. Coatings 9(5) (2019) 340.10.3390/coatings9050340Search in Google Scholar

35. Winnicki M., Piwowarczyk T., Małachowska A.: General description of cold sprayed coatings formation and of their properties. Bulletin of the Polish Academy of Sciences. Technical Sciences 66(3) (2018) 301-310.Search in Google Scholar

36. Deilami K., Kamruzzaman M., Liu Y.: Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation 67 (2018) 30-42.10.1016/j.jag.2017.12.009Search in Google Scholar

37. Zhao C., Jensen J., Weng Q., Weaver R.: A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon. Remote Sensing 10(9) (2018) 1428.10.3390/rs10091428Search in Google Scholar

38. Theeuwes N.E., Steeneveld G.J., Ronda R.J., Holtslag A.A.: A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. International Journal of Climatology 37(1) (2017) 443-454.10.1002/joc.4717Search in Google Scholar

39. Guo N., Xu C., Du Y., Chen H., Fu Y., Feng J.: Influence of calcium fluoride on underwater wet welding process stability. Welding in the World 63(1) (2019) 107-116.10.1007/s40194-018-0642-2Search in Google Scholar

40. Ma C., Wang Z., Behnamian Y., Gao Z., Wu Z., Qin Z., Xia D.H.: Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods. Measurement 138 (2019) 54-79.10.1016/j.measurement.2019.02.027Search in Google Scholar

eISSN:
2083-4799
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials