Otwarty dostęp

The Role of Bone Marrow Cells and Peripheral Blood Cells in the Osteogenic Process

 oraz   
17 gru 2024

Zacytuj
Pobierz okładkę

Cvetkovic VJ, Najman SJ, Rajkovic JS, Zabar ALJ, Vasiljevic PJ, Djordjevic LJB, Trajanovic MD: A comparison of the microarchitecture of lower limb long bones between some animal models and humans: a review. Vet Med-Czech 2013, 58(7): 339-351. Search in Google Scholar

Dimitriou R, Jones E, McGonagle D, Giannoudis PV: Bone regeneration: current concepts and future directions. BMC Med 2011, 9(1):66. Search in Google Scholar

Đorđević LB, Vasiljević PJ, Najman SJ: Concept and strategies of bone tissue engineering. Journal of the Anthropological Society of Serbia 2015, 51: 35-46. Search in Google Scholar

Jakob M, Saxer F, Scotti C, Schreiner S, Studer P, Scherberich A, Heberer M, Martin I: Perspective on the evolution of cell-based bone tissue engineering strategies. Eur Surg Res 2012, 49(1):1–7. Search in Google Scholar

Gómez-Barrena E, Rosset P, Müller I, Giordano R, Bunu C, Layrolle P, Konttinen YT, Luyten FP: Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 2011, 15(6):1266–1286. Search in Google Scholar

Hixon KR, Miller AN: Animal models of impaired long bone healing: Tissue engineering – and cell-based in vivo interventions. J Orthop Res 2022, 40:767-778. Search in Google Scholar

Wei J, Chen X, Xu Y, Shi L, Zhang M, Nie M, Liu X: Significance and considerations of establishing standardized critical values for critical size defects in animal models of bone tissue regeneration. Heliyon 2024, 10(13):e33768. Search in Google Scholar

Dučić R, Prokić BB, Hadži-Milić M, Krstić N, Todorović V, Radmanović N, Đorđević M, Daković M, Hamzagić F, Pajić S: Correlation of bone strength in an animal model (rabbit) after fracture and during the period of fixation with a titanium micro plate. Acta Vet-Beograd 2022, 72 (4):442-452. Search in Google Scholar

Mitrović MJ, Kitanović S, Tatalović N, Todorović A, Lazarević Macanović M: Radiological investigation of guinea pig (Cavia porcellus) lumbar vertebral morphology-a biomechanical aspect. Acta Vet-Beograd 2023, 73(1), 55-70 Search in Google Scholar

Caplan AI, Correa D: The MSC: an injury drugstore. Cell Stem Cell 2011, 9(1):11–5. Search in Google Scholar

Feehan J, Nurgali K, Apostolopoulos V, Al Saedi A, Duque G: Circulating osteogenic precursor cells: Building bone from blood. EBioMedicine 2019, 39:603-611. Search in Google Scholar

Živković, JM, Vukelić-Nikolić MĐ, Najdanović JG, Stojanović S, Vitorović JS, Radenković MB, Najman SJ: Bone tissue engineering based on bone marrow in blood clot loaded on mineral matrix carrier: Experimental study in subcutaneous mice model. Acta med Median 2017, 56(3): 5-11. Search in Google Scholar

Gurevitch O, Slavin S, Feldman AG: Conversion of red bone marrow into yellow – Cause and mechanisms. Med Hypotheses 2007, 69(3):531-536. Search in Google Scholar

Ehninger A, Trumpp A: The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 2011, 208(3):421-428. Search in Google Scholar

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284(5411):143-147. Search in Google Scholar

Nombela-Arrieta C, Manz MG: Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv 2017, 1(6):407-416. Search in Google Scholar

Morrison SJ, Scadden DT: The bone marrow niche for haematopoietic stem cells. Nature 2014, 505(7483):327-334. Search in Google Scholar

Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, Zhang L: Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther 2022, 13:429. Search in Google Scholar

Abe T, Sumi K, Kunimatsu R, Oki N, Tsuka Y, Nakajima K, Ando K, Tanimoto K: The effect of mesenchymal stem cells on osteoclast precursor cell differentiation. J Oral Sci 2019, 61(1):30-35. Search in Google Scholar

Sierra-Parraga JM, Merino A, Eijken M, Leuvenink H, Ploeg R, Møller BK, Jespersen B, Baan CC, Hoogduijn MJ: Reparative effect of mesenchymal stromal cells on endothelial cells after hypoxic and inflammatory injury. Stem Cell Res Ther 2020, 11(1):352. Search in Google Scholar

Ullah I, Subbarao RB, Rho GJ: Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 2015, 35(2):1–18. Search in Google Scholar

Cvetkovic VJ, Najdanovic JG, Vukelic-Nikolic MDj, Stojanovic ST, Najman SJ: Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model. Int Orthop 2015, 39 (11): 2173-2180. Search in Google Scholar

Najdanović JG, Cvetković VJ, Stojanović S, Vukelić-Nikolić MĐ, Stanisavljević MN, Živković JM, Najman SJ: The influence of adipose-derived stem cells induced into endothelial cells on ectopic vasculogenesis and osteogenesis. Cell Mol Bioeng 2015, 8(4):577–590. Search in Google Scholar

Thomas S, Jaganathan BG: Signaling network regulating osteogenesis in mesenchymal stem cells: J Cell Commun Signal 2022, 16(1):47–61. Search in Google Scholar

Bonewald LF: The amazing osteocyte. J Bone Miner Res 2011, 26(2):229–238. Search in Google Scholar

Fu J, Wang Y, Jiang Y, Du J, Xu J, Liu Y: Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther 2021, 12(1):377. Search in Google Scholar

Orkin SH, Zon LI: Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008, 132(4):631–644. Search in Google Scholar

Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA: The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022, 149(8):dev199908. Search in Google Scholar

McDonald MM, Kim AS, Mulholland BS, Rauner M: New Insights Into Osteoclast Biology. JBMR Plus 2021, 5(9):e10539. Search in Google Scholar

Seita J, Weissman IL: Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010, 2(6):640-653. Search in Google Scholar

Kloc M, Subuddhi A, Uosef A, Kubiak JZ, Ghobrial RM: Monocyte-macrophage lineage cell fusion. Int J Mol Sci 2022, 23(12):6553. Search in Google Scholar

Lee JY, Hong SH: Hematopoietic stem cells and their roles in tissue regeneration. Int J Stem Cells 2020, 13(1):1–12. Search in Google Scholar

Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK: Hematopoietic stem cell factors: Their functional role in self-renewal and clinical aspects. Front Cell Dev Biol 2022, 10:664261. Search in Google Scholar

Rix B, Maduro AH, Bridge KS, Grey W: Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022, 13:1009160. Search in Google Scholar

Hordyjewska A, Popiołek Ł, Horecka A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 2015, 67(3):387-96. Search in Google Scholar

Chow T, Mueller S, Rogers IM: Advances in umbilical cord blood therapy: Hematopoietic stem cell transplantation and beyond. In: El-Badri N. (eds) Advances in stem cell therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham; 2017, 139–168. Search in Google Scholar

Bendall LJ, Bradstock KF: G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev 2014, 25(4):355-67. Search in Google Scholar

Chandrabalan S, Dang L, Hansen U, Timmen M, Wehmeyer C, Stange R, Beißbarth T, Binder C, Bleckmann A, Menck K: A novel method to efficiently differentiate human osteoclasts from blood-derived monocytes. Biol Proced Online. 2024, 26(1):7. Search in Google Scholar

Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T: Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 1990, 87(18):7260-4. Search in Google Scholar

Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen W-R, Qi J, Nara Y, Pramusita A, Kinjo R, Mizoguchi I: Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci 2020, 21(14):5169. Search in Google Scholar

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002, 3(6):889-901. Search in Google Scholar

Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL: TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000, 106(12):1481-1488. Search in Google Scholar

Živković JM, Stojanović ST, Vukelić-Nikolić MĐ, Radenković MB, Najdanović JG, Ćirić M, Najman SJ: Macrophages’ contribution to ectopic osteogenesis in combination with blood clot and bone substitute: possibility for application in bone regeneration strategies. Int Orthop 2021, 45(4):1087-1095. Search in Google Scholar

Živković J, Najman S, Vukelić M, Stojanović S, Aleksić M, Stanisavljević M, Najdanović J: Osteogenic effect of inflammatory macrophages loaded onto mineral bone substitute in subcutaneous implants. Arch Biol Sci 2015, 67(3):173-186. Search in Google Scholar

Kacena MA, Gundberg CM, Horowitz MC: A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 2006, 39(5):978-984. Search in Google Scholar

Kaushansky K: Thrombopoietin and the hematopoietic stem cell. Ann N Y Acad Sci 2005, 1044(1):139-141. Search in Google Scholar

Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 2014, 20(11):1315-1320. Search in Google Scholar

Testa U, Castelli G, Pelosi E: Role of endothelial progenitor cells in vascular development, homestatic maintenance of blood vessels and in injury-mediated reparative response. Stem Cell Investig 2020, 7:7-7. Search in Google Scholar

Chopra H, Hung MK, Kwong DL, Zhang CF, Pow EHN: Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int 2018, 2018:9847015. Search in Google Scholar

Fadini GP, Losordo D, Dimmeler S: Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 2012, 110(4):624-637. Search in Google Scholar

Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X: A review into the insights of the role of endothelial progenitor cells on bone biology. Front Cell Dev Biol 2022, 10:878697. Search in Google Scholar

Percival CJ, Richtsmeier JT: Angiogenesis and intramembranous osteogenesis. Dev Dyn 2013, 242(8): 909-922. Search in Google Scholar

Najdanović JG, Cvetković VJ, Stojanović ST, Vukelić-Nikolić MĐ, Živković JM, Najman SJ: Vascularization and osteogenesis in ectopically implanted bone tissue-engineered constructs with endothelial and osteogenic differentiated adipose-derived stem cells. World J Stem Cells 2021, 13(1):91-114. Search in Google Scholar

Jang HJ, Yoon JK: The role of vasculature and angiogenic strategies in bone regeneration. Biomimetics (Basel) 2024, 9(2):75. Search in Google Scholar

Vuoti E, Lehenkari P, Tuukkanen J, Glumoff V, Kylmäoja E: Osteoclastogenesis of human peripheral blood, bone marrow, and cord blood monocytes. Sci Rep 2023, 13(1):3763. Search in Google Scholar

Pignolo RJ, Shore EM: Circulating osteogenic precursor cells. Crit Rev Eukaryot Gene Expr 2010, 20(2):171-180. Search in Google Scholar

Ratajczak MZ, Ratajczak J, Kucia M: Very small embryonic-like stem cells (VSELs). Circ Res 2019, 124(2):208-210. Search in Google Scholar

Chen W, Wang C, Yang Z-X, Zhang F, Wen W, Schaniel C, Mi X, Bock M, Zhang XB, Qiu H, Wang C: Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Commun Biol 2023, 6(1):393. Search in Google Scholar

Lorenzo J, Horowitz M, Choi Y: Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008, 29(4):403-440. Search in Google Scholar

Guder C, Gravius S, Burger C, Wirtz DC, Schildberg FA: Osteoimmunology: A current update of the interplay between bone and the immune system. Front Immunol 2020, 11:58. Search in Google Scholar

Scridon A: Platelets and their role in hemostasis and thrombosis-from physiology to pathophysiology and therapeutic implications. Int J Mol Sci 2022, 23(21):12772. Search in Google Scholar

Machlus KR, Italiano JE Jr: The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol 2013, 201(6):785-796. Search in Google Scholar

Ajdukovic Z, Najman S, Ðordevic Lj, Savic V, Mihailovic D, Petrovic D, Ignjatović N, Uskoković D: Repair of bone tissue affected by osteoporosis with hydroxyapatite-poly-llactide (HAp-PLLA) with and without blood plasma. J Biomater Appl 2005; 20:179-190. Search in Google Scholar

Nurden AT: Platelets, inflammation and tissue regeneration. Thromb Haemost 2011, 105 Suppl 1:S13-S33. Search in Google Scholar

Najman SJ, Cvetković VJ, Najdanović JG, Stojanović S, Vukelić-Nikolić MĐ, Vučković I, Petrović D: Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: a simulation of intraoperative procedure. J Craniomaxillofac Surg 2016, 44(10):1750-1760. Search in Google Scholar

Gharpinde MR, Pundkar A, Shrivastava S, Patel H, Chandanwale R: A comprehensive review of platelet-rich plasma and its emerging role in accelerating bone healing. Cureus 2024, 16(2):e54122. Search in Google Scholar

Vukelić-Nikolić MĐ, Najman SJ, Vasiljević PJ, Jevtović-Stoimenov TM, Cvetković VJ, Andrejev MN, Mitić ŽJ: Osteogenic capacity of diluted platelet-rich plasma in ectopic bone-forming model: Benefits for bone regeneration. J Craniomaxillofac Surg 2018, 46(11):1911-1918. Search in Google Scholar

Kim MY, Han HJ: Optimization of a two-step centrifugation protocol for bovine platelet-rich plasma. Acta Vet-Beograd 2022, 72 (3), 375-387. Search in Google Scholar

Eggold JT, Rankin EB: Erythropoiesis, EPO, macrophages, and bone. Bone 2019, 119:36–41. Search in Google Scholar

Dzierzak E, Philipsen S: Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 2013, 3(4):a011601. Search in Google Scholar

Marenzana M, Arnett TR: The key role of the blood supply to bone. Bone Res 2013, 1(3):203-215. Search in Google Scholar

Dregalla RC, Herrera JA, Donner EJ: Red blood cells and their releasates compromise bone marrow-derived human mesenchymal stem/stromal cell survival in vitro. Stem Cell Res Ther 2021, 12(1):547. Search in Google Scholar

Fröhlich LF: Micrornas at the interface between osteogenesis and angiogenesis as targets for bone regeneration. Cells 2019, 8(2):121. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medycyna, Weterynaria