1. bookTom 26 (2021): Zeszyt 2 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8691
Pierwsze wydanie
08 Nov 2012
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Otwarty dostęp

The Process of Data Validation and Formatting for an Event-Based Vision Dataset in Agricultural Environments

Data publikacji: 30 Dec 2021
Tom & Zeszyt: Tom 26 (2021) - Zeszyt 2 (December 2021)
Zakres stron: 173 - 177
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8691
Pierwsze wydanie
08 Nov 2012
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

In this paper, we describe our team’s data processing practice for an event-based camera dataset. In addition to the event-based camera data, the Agri-EBV dataset contains data from LIDAR, RGB, depth cameras, temperature, moisture, and atmospheric pressure sensors. We describe data transfer from a platform, automatic and manual validation of data quality, conversions to multiple formats, and structuring of the final data. Accurate time offset estimation between sensors achieved in the dataset uses IMU data generated by purposeful movements of the sensor platform. Therefore, we also outline partitioning of the data and time alignment calculation during post-processing.

Keywords

[1] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, ‘The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM,” International Journal of Robotics Research, vol. 36, no. 2, pp. 142–149, Feb. 2017. https://doi.org/10.1177/027836491769111510.1177/0278364917691115 Search in Google Scholar

[2] G. Gallego et al., “Event-based vision: A survey,” arXiv, pp. 1–30, Apr. 2019. https://doi.org/10.1109/tpami.2020.300841310.1109/TPAMI.2020.300841332750812 Search in Google Scholar

[3] D. Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt, “Event-based 3D SLAM with a depth-augmented dynamic vision sensor,” in IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, Sep. 2014, pp. 359–364. https://doi.org/10.1109/ICRA.2014.690688210.1109/ICRA.2014.6906882 Search in Google Scholar

[4] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and K. Daniilidis, “The multivehicle stereo event camera dataset: An event camera dataset for 3D perception,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2032–2039, Jul. 2018. https://doi.org/10.1109/LRA.2018.280079310.1109/LRA.2018.2800793 Search in Google Scholar

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,” International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, Aug. 2013. https://doi.org/10.1177/027836491349129710.1177/0278364913491297 Search in Google Scholar

[6] F. Barranco, C. Fermuller, Y. Aloimonos, and T. Delbruck, “A dataset for visual navigation with neuromorphic methods,” Frontiers in Neuroscience, vol. 10, pp. 1–9, Feb. 2016. https://doi.org/10.3389/fnins.2016.0004910.3389/fnins.2016.00049476308426941595 Search in Google Scholar

[7] J. Binas, D. Neil, S. C. Liu, and T. Delbruck, “DDD17: End-to-end DAVIS driving dataset,” arXiv Computer Vision and Pattern Recognition, pp. 1–9, Nov. 2017. Search in Google Scholar

[8] J. Wulff, D. J. Butler, G. B. Stanley, and M. J. Black, “Lessons and insights from creating a synthetic optical flow benchmark,” in Computer Vision – ECCV 2012. Workshops and Demonstrations. ECCV 2012 (Lecture Notes in Computer Science), A. Fusiello, V. Murino, R. Cucchiara, Eds. Springer, Berlin, Heidelberg, vol. 7584, 2012, pp. 168–177. https://doi.org/10.1007/978-3-642-33868-7_1710.1007/978-3-642-33868-7_17 Search in Google Scholar

[9] A. Zujevs, M. Pudzs, V. Osadcuks, A. Ardavs, M. Galauskis and J. Grundspenkis, “An Event-based vision dataset for visual navigation tasks in agricultural environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, Oct. 2021, pp. 13769–13775. https://doi.org/10.1109/ICRA48506.2021.956174110.1109/ICRA48506.2021.9561741 Search in Google Scholar

[10] A. Zujevs, M. Pudzs, V. Osadcuks, A. Ardavs, M. Galauskis, and J. Grundspenkis, “Agri-EBV-autumn dataset,” 2021. [Online]. Available on: https://ieee-dataport.org/open-access/agri-ebv-autumn. Accessed on: Aug 20, 2021. Search in Google Scholar

[11] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, June 2016, pp. 1271–1278. https://doi.org/10.1109/ICRA.2016.748725810.1109/ICRA.2016.7487258 Search in Google Scholar

[12] T. Toth, Z. Pusztai, and L. Hajder, “Automatic LiDAR-camera calibration of extrinsic parameters using a spherical target,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 8580–8586. https://doi.org/10.1109/ICRA40945.2020.919731610.1109/ICRA40945.2020.9197316 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo