Zacytuj

R. Raynes, L. C. D. Pomatto and K. J. A. Davies, Degradation of oxidized proteins by the protea-some: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways, Mol. Aspects Med. 50 (2016) 41–55; https://doi.org/10.1016/j.mam.2016.05.001Search in Google Scholar

I. Sahu and M. H. Glickman, Proteasome in action: substrate degradation by the 26S proteasome, Biochem. Soc. Trans. 49(2) (2021) 629–644; https://doi.org/10.1042/BST20200382Search in Google Scholar

D. Voges, P. Zwickl and W. Baumeister, The 26S proteasome: a molecular machine designed for controlled proteolysis, Annu. Rev. Biochem. 68 (1999) 1015–1068; https://doi.org/10.1146/annurev.biochem.68.1.1015Search in Google Scholar

G. A. Collins and A. L. Goldberg, The logic of the 26S proteasome, Cell 169 (2017) 792–806; https://doi.org/10.1016/j.cell.2017.04.023Search in Google Scholar

J. A. M. Bard, E. A. Goodall, E. R. Greene, E. Jonsson, K. C. Dong and A. Martin, Structure and function of the 26S proteasome, Annu. Rev. Biochem. 87 (2018) 697–724; https://doi.org/10.1146/annurev-biochem-062917-011931Search in Google Scholar

F. Türker, E. K. Cook and S. S. Margolis, The proteasome and its role in the nervous system, Cell Chem. Biol. 28 (2021) 903–917; https://doi.org/10.1016/j.chembiol.2021.04.003Search in Google Scholar

S. A. Bhat, Z. Vasi, R. Adhikari, A. Gudur, A. Ali, L. Jiang, R. Ferguson, D. Liang and S. Kuchay, Ubiquitin proteasome system in immune regulation and therapeutics, Curr. Opin. Pharmacol. 67 (2022) Article ID 102310; https://doi.org/10.1016/j.coph.2022.102310Search in Google Scholar

L. A. Passmore and D. Barford, Getting into position: the catalytic mechanisms of protein ubiquitylation, Biochem. J. 379(3) (2004) 513–525; https://doi.org/10.1042/BJ20040198Search in Google Scholar

S. H. Lecker, A. L. Goldberg and W. E. Mitch, Protein degradation by the ubiquitin–proteasome pathway in normal and disease states, J. Am. Soc. Nephrol. 17(7) (2006) 1807–1819; https://doi.org/10.1681/ASN.2006010083Search in Google Scholar

G. Kleiger and T. Mayor, Perilous journey: a tour of the ubiquitin-proteasome system, Trends Cell Biol. 24(6) (2014) 352–359; https://doi.org/10.1016/j.tcb.2013.12.003Search in Google Scholar

J. Adams, The proteasome: structure, function, and role in the cell, Cancer Treat. Rev. 29 (2003) 3–9; https://doi.org/10.1016/S0305-7372(03)00081-1Search in Google Scholar

M. Groettrup, C. J. Kirk and M. Basler, Proteasomes in immune cells: more than peptide producers?, Nat. Rev. Immunol. 10 (2010) 73–78; https://doi.org/10.1038/nri2687Search in Google Scholar

L. Bedford, S. Paine, P. W. Sheppard, R. J. Mayer and J. Roelofs, Assembly, structure, and function of the 26S proteasome, Trends Cell Biol. 20(7) (2010) 391–401; https://doi.org/10.1016/j.tcb.2010.03.007Search in Google Scholar

L. Budenholzer, C. L. Cheng, Y. Li and M. Hochstrasser, Proteasome structure and assembly, J. Mol. Biol. 429(22) (2017) 3500–3524; https://doi.org/10.1016/j.jmb.2017.05.027Search in Google Scholar

T. A. Thibaudeau and D. M. Smith, A practical review of proteasome pharmacology, Pharmacol. Rev. 71(2) (2019) 170–197; https://doi.org/10.1124/pr.117.015370Search in Google Scholar

E. Ogorevc, E. S. Schiffrer, I. Sosič and S. Gobec, A patent review of immunoproteasome inhibitors, Expert Opin. Ther. Pat. 28(7) (2018) 517–540; https://doi.org/10.1080/13543776.2018.1484904Search in Google Scholar

M. Groettrup, S. Khan, K. Schwarz and G. Schmidtke, Interferon-γ inducible exchanges of 20S proteasome active site subunits: Why?, Biochimie 83(3–4) (2001) 367–372; https://doi.org/10.1016/S0300-9084(01)01251-2Search in Google Scholar

G. Kaur and S. Batra, Emerging role of immunoproteasomes in pathophysiology, Immunol. Cell Biol. 94(9) (2016) 812–820; https://doi.org/10.1038/icb.2016.50Search in Google Scholar

A. Mani and E. P. Gelmann, The ubiquitin-proteasome pathway and its role in cancer, J. Clin. Oncol. 23(21) (2005) 4776–4789; https://doi.org/10.1200/JCO.2005.05.081Search in Google Scholar

D. J. Kuhn and R. Z. Orlowski, The immunoproteasome as a target in hematologic malignancies, Semin. Hematol. 49(3) (2012) 258–262; https://doi.org/10.1053/j.seminhematol.2012.04.003Search in Google Scholar

M. Schmidt and D. Finley, Regulation of proteasome activity in health and disease, Biochim. Biophys. Acta BBA – Mol. Cell Res. 1843(1) (2014) 13–25; https://doi.org/10.1016/j.bbamcr.2013.08.012Search in Google Scholar

J. E. Park, Z. Miller, Y. Jun, W. Lee and K. B. Kim, Next-generation proteasome inhibitors for cancer therapy, Transl. Res. 198 (2018) 1–16; https://doi.org/10.1016/j.trsl.2018.03.002Search in Google Scholar

V. T. de M. Hungria, E. de Q. Crusoé, R. I. Bittencourt, A. Maiolino, R. J. P. Magalhães, J. do N. Sobrinho, J. V. Pinto, R. C. Fortes, E. de S. Moreira and P. Y. Tanaka, New proteasome inhibitors in the treatment of multiple myeloma, Hematol. Transfus. Cell Ther. 41(1) (2019) 76–83; https://doi.org/10.1016/j.htct.2018.07.003Search in Google Scholar

E. M. Huber and M. Groll, Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development, Angew. Chem. Int. Ed. 51(35) (2012) 8708–8720; https://doi.org/10.1002/anie.201201616Search in Google Scholar

A. F. Kisselev and M. Groettrup, Subunit specific inhibitors of proteasomes and their potential for immunomodulation, Curr. Opin. Chem. Biol. 23 (2014) 16–22; https://doi.org/10.1016/j.cbpa.2014.08.012Search in Google Scholar

P. M. Cromm and C. M. Crews, The proteasome in modern drug discovery: second life of a highly valuable drug target, ACS Cent. Sci. 3 (2017) 830–838; https://doi.org/10.1021/acscentsci.7b00252Search in Google Scholar

B. L. Zerfas, M. E. Maresh and D. J. Trader, The immunoproteasome: an emerging target in cancer and autoimmune and neurological disorders, J. Med. Chem. 63(5) (2020) 1841–1858; https://doi.org/10.1021/acs.jmedchem.9b01226Search in Google Scholar

R. Ettari, M. Zappalà, S. Grasso, C. Musolino, V. Innao and A. Allegra, Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma, Pharmacol. Ther. 182 (2018) 176–192; https://doi.org/10.1016/j.pharmthera.2017.09.001Search in Google Scholar

D. J. Sherman and J. Li, Proteasome inhibitors: harnessing proteostasis to combat disease, Molecules 25(3) (2020) Article ID 671 (30 pages); https://doi.org/10.3390/molecules25030671Search in Google Scholar

E. M. Huber and M. Groll, A nut for every bolt: subunit-selective inhibitors of the immunoproteasome and their therapeutic potential, Cells 10(8) (2021) Article ID 1929 (21 pages); https://doi.org/10.3390/cells10081929Search in Google Scholar

G. R. Tundo, P. Cascio, D. Milardi, A. M. Santoro, G. Graziani, P. M. Lacal, A. Bocedi, F. Oddone, M. Parravano, A. Coletta, M. Coletta and D. Sbardella, Targeting immunoproteasome in neurode-generation: A glance to the future, Pharmacol. Ther. 241 (2023) Article ID 108329; https://doi.org/10.1016/j.pharmthera.2022.108329Search in Google Scholar

I. Sosič, M. Gobec, B. Brus, D. Knez, M. Živec, J. Konc, S. Lešnik, M. Ogrizek, A. Obreza, D. Žigon, D. Janežič, I. Mlinarič-Raščan and S. Gobec, Nonpeptidic selective inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome, Angew. Chem. Int. Ed. 55(19) (2016) 5745–5748; https://doi.org/10.1002/anie.201600190Search in Google Scholar

E. S. Schiffrer, I. Sosič, A. Šterman, J. Mravljak, I. M. Raščan, S. Gobec and M. Gobec, A focused structure-activity relationship study of psoralen-based immunoproteasome inhibitors, MedChem-Comm 10 (2019) 1958–1965; https://doi.org/10.1039/C9MD00365GSearch in Google Scholar

E. S. Schiffrer, M. Proj, M. Gobec, L. Rejc, A. Šterman, J. Mravljak, S. Gobec and I. Sosič, Synthesis and biochemical evaluation of warhead-decorated psoralens as (immuno)proteasome inhibitors, Molecules 26(2) (2021) Article ID 356 (18 pages); https://doi.org/10.3390/molecules26020356Search in Google Scholar

A. P. Bento, A. Gaulton, A. Hersey, L. J. Bellis, J. Chambers, M. Davies, F. A. Krüger, Y. Light, L. Mak, S. McGlinchey, M. Nowotka, G. Papadatos, R. Santos and J. P. Overington, The ChEMBL bioactivity database: an update, Nucleic Acids Res. 42 (2014) D1083–D1090; https://doi.org/10.1093/nar/gkt1031Search in Google Scholar

L.-H. Wang, A. Evers, P. Monecke and T. Naumann, Ligand based lead generation – considering chemical accessibility in rescaffolding approaches via BROOD, J. Cheminf. 4(Suppl. 1) (2012) Article ID O20 (1 page); https://doi.org/10.1186/1758-2946-4-S1-O20Search in Google Scholar

B. J. Neves, R. V. Bueno, R. C. Braga and C. H. Andrade, Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches, Bioorg. Med. Chem. Lett. 23(8) (2013) 2436–2441; https://doi.org/10.1016/j.bmcl.2013.02.006Search in Google Scholar

A. Obreza, K. Grabrijan, S. Kadić, F. J. de L. Garrido, I. Sosič, S. Gobec and M. Jukič, Chlorocarbonylsulfenyl chloride cyclizations towards piperidin-3-yl-oxathiazol-2-ones as potential covalent inhibitors of threonine proteases, Acta Chim. Slov. 64(4) (2017) 771–781; https://doi.org/10.17344/acsi.2017.3883Search in Google Scholar

A. P. Hill and R. J. Young, Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity, Drug Discov. Today 15 (15–16) (2010) 648–655; https://doi.org/10.1016/j.drudis.2010.05.016Search in Google Scholar

E. M. Huber, M. Basler, R. Schwab, W. Heinemeyer, C. J. Kirk, M. Groettrup and M. Groll, Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity, Cell 148(4) (2012) 727–738; https://doi.org/10.1016/j.cell.2011.12.030Search in Google Scholar

C. Dubiella, H. Cui, M. Gersch, A. J. Brouwer, S. A. Sieber, A. Krüger, R. M. J. Liskamp and M. Groll, selective inhibition of the immunoproteasome by ligand-induced crosslinking of the active site, Angew. Chem. Int. Ed. 53(44) (2014) 11969–11973; https://doi.org/10.1002/anie.201406964Search in Google Scholar

L. Kollár, M. Gobec, B. Szilágyi, M. Proj, D. Knez, P. Ábrányi-Balogh, L. Petri, T. Imre, D. Bajusz, G. G. Ferenczy, S. Gobec, G. M. Keserű and I. Sosič, Discovery of selective fragment-sized immunoproteasome inhibitors, Eur. J. Med. Chem. 219 (2021) Article ID 113455; https://doi.org/10.1016/j.ejmech.2021.113455Search in Google Scholar

L. Kollár, M. Gobec, M. Proj, L. Smrdel, D. Knez, T. Imre, Á. Gömöry, L. Petri, P. Ábrányi-Balogh, D. Csányi, G. G. Ferenczy, S. Gobec, I. Sosič and G. M. Keserű, fragment-sized and bidentate (immuno)proteasome inhibitors derived from cysteine and threonine targeting warheads, Cells 10(12) (2021) Article ID 3431 (19 pages); https://doi.org/10.3390/cells10123431Search in Google Scholar

R. Ettari, C. Cerchia, S. Maiorana, M. Guccione, E. Novellino, A. Bitto, S. Grasso, A. Lavecchia and M. Zappalà, development of novel amides as noncovalent inhibitors of immunoproteasomes, ChemMedChem 14(8) (2019) 842–852; https://doi.org/10.1002/cmdc.201900028Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other