Otwarty dostęp

Synthesis and protective effect of pyrazole conjugated imidazo[1,2-a]pyrazine derivatives against acute lung injury in sepsis rats via attenuation of NF-κB, oxidative stress, and apoptosis


Zacytuj

Y. Lin, Y. Xu and Z. Zhang, Sepsis-induced myocardial dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting mitochondria, Inflammation 43(4) (2016) 1184–1200; https://doi.org/10.1007/s10753-020-01233-wSearch in Google Scholar

J. C. Marshall and A. al Naqbi, Principles of source control in the management of sepsis, Crit. Care Clin. 25(4) (2019) 753–768; https://doi.org/10.1016/j.ccc.2009.08.001Search in Google Scholar

E. R. Johnson and M. A. Matthay, Acute lung injury: Epidemiology, pathogenesis, and treatment, J. Aerosol Med. Pulm. Drug Deliv. 23(4) 2010 243–252; https://doi.org/10.1089/jamp.2009.0775Search in Google Scholar

Y. Chen, H. Tong, Z. Pan, D. Jiang, X. Zhang, J. Qiu, L. Su and M. Zhang, Xuebijing injection attenuates pulmonary injury by reducing oxidative stress and pro-inflammatory damage in rats with heat stroke, Exp. Ther. Med. 13 (2017) 3408–3416; https://doi.org/10.3892/etm.2017.4444Search in Google Scholar

S. Saharan, R. Lodha and S. K. Kabra, Management of acute lung injury/ARDS, Indian J. Pediatr. 77(11) (2010) 1296–1302; https://doi.org/10.1007/s12098-010-0169-zSearch in Google Scholar

J. C. Rudkowski, E. Barreiro, R. Harfouche, P. Goldberg, O. Kishta, P. D’Orleans-Juste, J. Labonte, O. Lesur and S. N. A. Hussain, Roles of iNOS and nNOS in sepsis-induced pulmonary apoptosis, Am. J. Physiol. Lung Cell. Mol. Physiol. 286 (2004) L793–L800; https://doi.org/10.1152/ajplung.00266.2003Search in Google Scholar

A. Ansari, A. Ali, M. Asif and Shamsuzzaman, Review: biologically active pyrazole derivatives, New J. Chem. 41 (2017) 16–41; https://doi.org/10.1039/c6nj03181aSearch in Google Scholar

J. Marino, Celecoxib, in The Essence Analgesia and Analgesics – Section 4 NSAIDS – Chapter 56, (Eds. R. S. Sinatra, J. S. Jahr and J. M. Watkins-Pitchford), Cambridge University Press, Cambridge 2010, pp. 238–242; https://doi.org/10.1017/CBO9780511841378.056Search in Google Scholar

G. Steinbach, P. M. Lynch, R. K. S. Phillips, M. H. Wallace, E. Hawk, G. B. Gordon, N. Wakabayashi, B. Saunders, Y. Shen, T. Fujimura, L. K. Su, B. Levin, L. Godio, S. Patterson, M. A. Rodriguez-Bigas, S. L. Jester, K. L. King, M. Schumacher, J. Abbruzzese, R. N. DuBois, W. N. Hittelman, S. Zimmerman, J. W. Sherman and G. Kelloff, The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis, N. Engl. J. Med. 342 (2000) 1946–1952; https://doi.org/10.1056/NEJM200006293422603Search in Google Scholar

M. Mantzanidou, E. Pontiki and D. Hadjipavlou-Litina, Pyrazoles and pyrazolines as anti-inflammatory agents, Molecules 26(11) (2021) Article ID 3439 (18 pages); https://doi.org/10.3390/molecules26113439Search in Google Scholar

A. Rahman and F. Fazal, Blocking NF-kB: An inflammatory issue, Proc. Am. Thorac. Soc. 8(6) (2011) 497–503; https://doi.org/10.1513/pats.201101-009MWSearch in Google Scholar

E. Abraham, Nuclear factor-κB and its role in sepsis-associated organ failure, J. Infect. Dis. 187 (2003) S364–S369; https://doi.org/10.1086/374750Search in Google Scholar

C. Bhan, P. Dipankar, P. Chakraborty and P. P. Sarangi, Role of cellular events in the pathophysiology of sepsis, Inflamm. Res. 65(11) (2016) 853–868; https://doi.org/10.1007/s00011-016-0970-xSearch in Google Scholar

L. Bird, Inflammation: Hope for sepsis treatment, Nat. Rev. Drug Discov. 9 (2010) 516–517; https://doi.org/10.1038/nrd3212Search in Google Scholar

R. Goel, V. Luxami and K. Paul, Recent advances in development of imidazo[1,2-a]pyrazines: Synthesis, reactivity and their biological applications, Org. Biomol. Chem. 13(12) (2015) 3525–3555; https://doi.org/10.1039/c4ob01380hSearch in Google Scholar

S. Hemasrilatha, K. Sruthi, A. Manjula, V. Harinadha Babu and B. Vittal Rao, Synthesis and anti-inflammatory activity of imidazo[1,2-a]pyridinyl/pyrazinyl benzamides and acetamides, Indian J. Chem. – Sect. B Org. Med. Chem. 51 (2012) 981–987.Search in Google Scholar

A. Özdemir, G. Turan-Zitouni, Z. A. Kaplancikli and Y. Tunali, Synthesis and biological activities of new hydrazide derivatives, J. Enzyme Inhib. Med. Chem. 24 (2009) 825–831; https://doi.org/10.1080/14756360802399712Search in Google Scholar

S. A. H. El-Feky, Z. K. Abd El-Samii, N. A. Osman, J. Lashine, M. A. Kamel and H. K. Thabet, Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II, Bioorg. Chem. 58 (2015) 104–116; https://doi.org/10.1016/j.bioorg.2014.12.003Search in Google Scholar

J. K. Srivastava, G. G. Pillai, H. R. Bhat, A. Verma and U. P. Singh, Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase, Sci. Rep. 7 (2017) Article ID 5851 (17 pages); https://doi.org/10.1038/s41598-017-05934-5Search in Google Scholar

J. K. Srivastava, N. T. Awatade, H. R. Bhat, A. Kmit, K. Mendes, M. Ramos, M. D. Amaral and U. P. Singh, Pharmacological evaluation of hybrid thiazolidin-4-one-1,3,5-triazines for NF-κB, biofilm and CFTR activity, RSC Adv. 5(108) (2015) 88710–88718; https://doi.org/10.1039/c5ra09250gSearch in Google Scholar

A. Masih, A. K. Agnihotri, J. K. Srivastava, N. Pandey, H. R. Bhat and U. P. Singh, Discovery of novel pyrazole derivatives as a potent anti-inflammatory agent in RAW264.7 cells via inhibition of NF-ĸB for possible benefit against SARS-CoV-2, J. Biochem. Mol. Toxicol. 35 (2021) e22656; https://doi.org/10.1002/jbt.22656Search in Google Scholar

Organisation for Economic Co-operation and Development, OECD Guidelines, OECD 423. Acute Oral Toxicity, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris 2002; https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001-enSearch in Google Scholar

L. Dejager, I. Pinheiro, E. Dejonckheere and C. Libert, Cecal ligation and puncture: The gold standard model for polymicrobial sepsis?, Trends Microbiol. 19(4) (2011) 198–208; https://doi.org/10.1016/j.tim.2011.01.001Search in Google Scholar

L. A. Huppert, M. A. Matthay and L. B. Ware, Pathogenesis of acute respiratory distress syndrome, Semin. Respir. Crit. Care Med. 40 (2019) 31–39; https://doi.org/10.1055/s-0039-1683996Search in Google Scholar

A. J. Walkey, R. Summer, V. Ho and P. Alkana, Acute respiratory distress syndrome: Epidemiology and management approaches, Clin. Epidemiol. 4(1) (2012) 159–169; https://doi.org/10.2147/CLEP.S28800Search in Google Scholar

Q. Kong, X. Wu, Z. Qiu, Q. Huang, Z. Xia and X. Song, Protective effect of dexmedetomidine on acute lung injury via the upregulation of tumour necrosis factor-α-induced protein-8-like 2 in septic mice, Inflammation 43 (2020) 833–846; https://doi.org/10.1007/s10753-019-01169-wSearch in Google Scholar

M. T. P. de Oliveira, D. de S. Coutinho, É. T. de Souza, S. S. Guterres, A. R. Pohlmann, P. M. R. Silva, M. A. Martins and A. Bernardi, Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways, Int. J. Nanomed. 14 (2019) 5215–5228; https://doi.org/10.2147/IJN.S200666Search in Google Scholar

B. B. Davis, Y.-H. Shen, D. J. Tancredi, V. Flores, R. P. Davis and K. E. Pinkerton, Leukocytes are recruited through the bronchial circulation to the lung in a spontaneously hypertensive rat model of COPD, PLoS ONE 7(3) (2012) e33304; https://doi.org/10.1371/journal.pone.0033304Search in Google Scholar

J. Rebetz, J. W. Semple and R. Kapur, The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury, Transfus. Med. Hemother. 45(5) (2018) 290–298; https://doi.org/10.1159/000492950Search in Google Scholar

C. W. Chow, M. T. H. Abreu, T. Suzuki and G. P. Downey, Oxidative stress and acute lung injury, Am. J. Respir. Cell Mol. Biol. 29(4) (2003) 427–431; https://doi.org/10.1165/rcmb.F278Search in Google Scholar

H. S. Park, S. R. Kim and Y. C. Lee, Impact of oxidative stress on lung diseases, Respirology 14(1) (2009) 27–38; https://doi.org/10.1111/j.1440-1843.2008.01447.xSearch in Google Scholar

V. M. Victor, M. Rocha and M. De La Fuente, Immune cells: Free radicals and antioxidants in sepsis, Int. Immunopharmacol. 4(3) (2004) 327–347; https://doi.org/10.1016/j.intimp.2004.01.020Search in Google Scholar

D. Bin Yim, D. E. Lee, Y. So, C. Choi, W. Son, K. Jang, C. S. Yang and J. H. Kim, Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species, ACS Nano 14 (2020) 10324–10336; https://doi.org/10.1021/acsnano.0c03807Search in Google Scholar

H. F. Galley, Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis, Crit. Care 14(4) (2010) Article ID 230 (9 pages); https://doi.org/10.1186/cc9098Search in Google Scholar

M. Rocha, R. Herance, S. Rovira, A. Hernández-Mijares and V. M. Victor, Mitochondrial dysfunction and antioxidant therapy in sepsis, Infect. Disord. - Drug Targets 12(2) (2012) 161–178; https://doi.org/10.2174/187152612800100189Search in Google Scholar

A. Strzepa, K. A. Pritchard and B. N. Dittel, Myeloperoxidase: A new player in autoimmunity, Cell. Immunol. 317 (2017) 1–8; https://doi.org/10.1016/j.cellimm.2017.05.002Search in Google Scholar

D. R. Janeiro, Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury, Free Radic. Biol. Med. 9(6) (1990) 515–540; https://doi.org/10.1016/0891-5849(90)90131-2Search in Google Scholar

J. Sha, B. Sui, X. Su, Q. Meng and C. Zhang, Alteration of oxidative stress and inflammatory cytokines induces apoptosis in diabetic nephropathy, Mol. Med. Rep. 16 (2017) 7715–7723; https://doi.org/10.3892/mmr.2017.7522Search in Google Scholar

D. K. Gupta, J. M. Palma and F. J. Corpas (Eds.), Reactive Oxygen Species and Oxidative Damage in Plants Under Stress, Springer, Cham 2015.Search in Google Scholar

R. B. Goodman, J. Pugin, J. S. Lee and M. A. Matthay, Cytokine-mediated inflammation in acute lung injury, Cytokine Growth Factor Rev. 14(6) (2003) 523–535; https://doi.org/10.1016/S1359-6101(03)00059-5Search in Google Scholar

U. P. Singh, J. K. Srivastava and H. R. Bhat, Discovery of novel 1,3,5-triazine-thiourea based dual PI3K/mTOR inhibitor against non-small cell lung cancer (NSCLC), Ann. Oncol. 27(Suppl. 9) (2016) 161P - Abstracts ix50; https://doi.org/10.1016/S0923-7534(21)00319-7Search in Google Scholar

Q, Kong, X. Wu, Z. Qiu, Q. Huang, Z. Xia and X. Song, Protective effect of dexmedetomidine on acute lung injury via the upregulation of tumour necrosis factor-α-induced protein-8-like 2 in septic mice, Inflammation 43 (2020) 833–846; https://doi.org/10.1007/s10753-019-01169-wSearch in Google Scholar

Y. Chen, H. Tong, Z. Pan, D. Jiang, X. Zhang, J. Qiu, L. Su and M. Zhang, Xuebijing injection attenuates pulmonary injury by reducing oxidative stress and pro-inflammatory damage in rats with heat stroke, Exp. Ther. Med. 13 (2017) 3408–3416; https://doi.org/10.3892/etm.2017.4444Search in Google Scholar

D. Jiang, J. Liang, J. Fan, S. Yu, S. Chen, Y. Luo, G. D. Prestwich, M. M. Mascarenhas, H. G. Garg, D. A. Quinn, R. J. Homer, D. R. Goldstein, R. Bucala, P. J. Lee, R. Medzhitov and P. W. Noble, Regulation of lung injury and repair by toll-like receptors and hyaluronan, Nat. Med. 11 (2005) 1173–1179; https://doi.org/10.1038/nm1315Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other