Zacytuj

1. J. K. Anninga, H. Gelderblom, M. Fiocco, J. R. Kroep, A. H. Taminiau, P. C. Hogendoorn and R. M. Egeler, Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand?, Eur. J. Cancer 47(16) (2011) 2431–2445; https://doi.org/10.1016/j.ejca.2011.05.030 Search in Google Scholar

2. C. P. Gibbs, P. P. Levings and S. C. Ghivizzani, Evidence for the osteosarcoma stem cell, Current Orthopaedic Practice 22(4) (2011) 322–326; https://doi.org/10.1097/BCO.0b013e318221aee8 Search in Google Scholar

3. D. Nassar and C. Blanpain, Cancer stem cells: Basic concepts and therapeutic implications, Annu. Rev. Pathol. 23(11) (2016) 47–76; https://doi.org/10.1146/annurev-pathol-012615-044438 Search in Google Scholar

4. M. Jang, S. S. Kim and J. Lee, Cancer cell metabolism: implications for therapeutic targets, Exp. Mol. Med. 45(10) (2013) Article ID 201385 (8 pages); https://doi.org/10.1038/emm.2013.85 Search in Google Scholar

5. M. G. Vander Heiden, L. C. Cantley and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science 324(5930) (2009) 1029–1033; https://doi.org/10.1126/science.1160809 Search in Google Scholar

6. H. Kondoh, M. E. Lleonart, D. Bernard and J. Gil, Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization, Histol. Histopathol. 22(1) (2007) 85–90; https://doi.org/10.14670/HH-22.85 Search in Google Scholar

7. C. D. Folmes, T. J. Nelson, A. Martinez-Fernandez, D. K. Arrell, J. Z. Lindor, P. P. Dzeja, Y. Ikeda, C. Perez-Terzic and A. Terzic, Somatic oxidative bioenergetics transitions into pluripotency dependent glycolysis to facilitate nuclear reprogramming, Cell. Metab. 14(2) (2011) 264–271; https://doi.org/10.1016/j.cmet.2011.06.011 Search in Google Scholar

8. G. Farnie, F. Sotgia and M. P. Lisanti, High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant, Oncotarget 6(31) (2015) 30472–30486; https://doi.org/10.18632/oncotarget.5401 Search in Google Scholar

9. A. De Luca, M. Fiorillo, M. Peiris-Pagès, B. Ozsvari, D. L. Smith, R. Sanchez-Alvarez, U. E. Martinez-Outschoorn, A. R. Cappello, V. Pezzi, M. P. Lisanti and F. Sotgia, Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells, Oncotarget 6(17) (2015) 14777–14795; https://doi.org/10.18632/oncotarget.4401 Search in Google Scholar

10. P. Sancho, D. Barneda and C. Heeschen, Hallmarks of cancer stem cell metabolism, Br. J. Cancer 114(12) (2016) 1305–1312; https://doi.org/10.1038/bjc.2016.152 Search in Google Scholar

11. V. Snyder, T. C. Reed-Newman, L. Arnold, S. M. Thomas and S. Anant, Cancer stem cell metabolism and potential therapeutic targets, Front. Oncol. 203(8) (2018) Article ID e203 (9 pages); https://doi.org/10.3389/fonc.2018.00203 Search in Google Scholar

12. J. He, L. Xiong, Q. Li, L. Lin, X. Miao, S. Yan, Z. Hong, L. Yang, Y. Wen and X. Deng, 3D modeling of cancer stem cell niche, Oncotarget 9(1) (2017) 1326–1345; https://doi.org/10.18632/oncotarget.19847 Search in Google Scholar

13. S. Park, S. Ahn, Y. Shin, Y. Yang and C. H. Yeom, Vitamin C in cancer: A metabolomics perspective, Front. Physiol. 762(9) (2018) Article ID e762 (9 pages); https://doi.org/10.3389/fphys.2018.00762 Search in Google Scholar

14. N. J. Satheesh, S. M. Samuel and D. Büsselberg, Combination therapy with vitamin C could eradicate cancer stem cells, Biomolecules 10(1) (2020) Article ID 1000079 (20 pages); https://doi.org/10.3390/biom10010079 Search in Google Scholar

15. M. T. Valenti, M. Zanatta, L. Donatelli, G. Viviano, C. Cavallini, M. T. Scupoli and L. Dalle Carbonare, Ascorbic acid induces either differentiation or apoptosis in MG-63 osteosarcoma lineage, Anticancer Res. 34(4) (2014) 1617–1627. Search in Google Scholar

16. G. Fernandes, A. W. Barone and R. Dziak, The effect of ascorbic acid on bone cancer cells in vitro, Cogent Biol. 3(1) (2017) Article ID 1288335 (12 pages); https://doi.org/10.1080/23312025.2017.1288335 Search in Google Scholar

17. S. J. Lee, J. H. Jeong, I. H. Lee, J. Lee, J. H. Jung, H. Y. Park, D. H. Lee and Y. S. Chae, Effect of high-dose vitamin C combined with anti-cancer treatment on breast cancer cells, Anticancer Res. 39(2) (2019) 751–758; https://doi.org/10.21873/anticanres.13172 Search in Google Scholar

18. J. Kaźmierczak-Barańska, K. Boguszewska, A. Adamus-Grabicka and B. T. Karwowski, Two faces of vitamin C – antioxidative and pro-oxidative agent, Nutrients 12(5) (2020) Article ID1201501 (19 pages); https://doi.org/10.3390/nu12051501 Search in Google Scholar

19. K. F. Hung, T. Yang and S. Y. Kao, Cancer stem cell theory: Are we moving past the mist?, J. Chin. Med. Assoc. 82(11) (2019) 814–818; https://doi.org/10.1097/JCMA.0000000000000186 Search in Google Scholar

20. Z. Zhong, S. Mao, H. Lin, H. Li, J. Lin and J. M. Lin, Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry, Talanta 204 (2019) 6–12; https://doi.org/10.1016/j.talanta.2019.05.088 Search in Google Scholar

21. E. Mizushima, T. Tsukahara, M. Emori, K. Murata, A. Akamatsu, Y. Shibayama, S. Hamada, Y. Watanabe, M. Kaya, Y. Hirohashi, T. Kanaseki, M. Nakatsugawa, T. Kubo, T. Yamashita, N. Sato and T. Torigoe, Osteosarcoma-initiating cells show high aerobic glycolysis and attenuation of oxidative phosphorylation mediated by LIN28B, Cancer science 111(1) (2020) 36–46; https://doi.org/10.1111/cas.14229 Search in Google Scholar

22. G. Palmini, R. Zonefrati, C. Mavilia, A. Aldinucci, E. Luzi, F. Marini, A. Franchi, R. Capanna, A. Tanini and M. L. Brandi, Establishment of cancer stem cell cultures from human conventional osteosarcoma, J. Vis. Exp. 116 (2016) Article ID e53884 (17 pages); https://doi.org/10.3791/53884 Search in Google Scholar

23. S. H. Bae, H. Ryu, K. J. Rhee, J. E. Oh, S. K. Baik, K. Y. Shim, J. H. Kong, S. Y. Hyun, H. S. Pack, C. Im, H. C. Shin, Y.M. Kim, H. S. Kim, Y. W. Eom and J. I. Lee, L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor, Growth Factors 33(2) (2015) 71–78; https://doi.org/10.3109/08977194.2015.1013628 Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other