1. bookTom 72 (2022): Zeszyt 4 (December 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1846-9558
Pierwsze wydanie
28 Feb 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Anti-inflammatory effects of NaB and NaPc in Acinetobacter baumannii-stimulated THP-1 cells via TLR-2/NF-κB/ROS/NLRP3 pathway

Data publikacji: 18 Oct 2022
Tom & Zeszyt: Tom 72 (2022) - Zeszyt 4 (December 2022)
Zakres stron: 615 - 628
Przyjęty: 11 Apr 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1846-9558
Pierwsze wydanie
28 Feb 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. C. Ayoub Moubareck and D. Hammoudi Halat, Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen, Antibiotics (Basel) 9(3) (2020) 119–121; https://doi.org/10.3390/antibiotics903011910.3390/antibiotics9030119714851632178356 Search in Google Scholar

2. F. C. Morris, C. Dexter, X. Kostoulias, M. I. Uddin and A. Y. Peleg, The mechanisms of disease caused by Acinetobacter baumannii, Front. Microbiol. 10 (2019) Article ID 1601 (20 pages); https://doi.org/10.3389/fmicb.2019.0160110.3389/fmicb.2019.01601665057631379771 Search in Google Scholar

3. M. G. Garcia-Patino, R. Garcia-Contreras and P. Licona-Limon, The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections, Front. Immunol. 8 (2017) Article ID 441 (10 pages); https://doi.org/10.3389/fimmu.2017.0044110.3389/fimmu.2017.00441538870028446911 Search in Google Scholar

4. J. Tan, C. McKenzie, M. Potamitis, A. N. Thorburrn, C. R. Mackay and L. Macia, The role of short-chain fatty acids in health and disease, Adv. Immunol. 121 (2014) 91–119; https://doi.org/10.1016/B978-0-12-800100-4.00003-910.1016/B978-0-12-800100-4.00003-924388214 Search in Google Scholar

5. M. Jardou and R. Lawson, Supportive therapy during COVID-19: The proposed mechanism of short-chain fatty acids to prevent cytokine storm and multi-organ failure, Med. Hypotheses 154 (2021) Article ID 110661 (7 pages); https://doi.org/10.1016/j.mehy.2021.11066110.1016/j.mehy.2021.110661833954634385045 Search in Google Scholar

6. D. Parada Venegas, M. K. de la Fuente, G. Landskron, M. J. Gonzalez, R. Quera, G. Dijkstra, H. J. M. Harmsen, K. N. Faber and M. A. Hermoso, Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol. 10 (2019) Article ID 277 (16 pages); https://doi.org/10.3389/fimmu.2019.0027710.3389/fimmu.2019.00277642126830915065 Search in Google Scholar

7. N. Li, X. X. Liu, M. Hong, X. Z. Huang, H. Chen, J. H. Xu, C. Wang, Y. X. Zhang, J. X. Zhong, H. Nie and Q. Gong, Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release, Int. Immunopharmacol. 56 (2018) 242–248; https://doi.org/10.1016/j.intimp.2018.01.01710.1016/j.intimp.2018.01.01729414658 Search in Google Scholar

8. A. Elce, F. Amato, F. Zarrilli, A. Calignano, R. Troncone, G. Castaldo and R. B. Canani, Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells, Benef. Microbes 8(5) (2017) 841–847; https://doi.org/10.3920/BM2016.019710.3920/BM2016.019728856908 Search in Google Scholar

9. H. Lührs, T. Kudlich, M. Neumann, J. Schauber, R. Melcher, A. Gostner, W. Scheppach and T. P. Menzel, Butyrate-enhanced TNF alpha-induced apoptosis is associated with inhibition of NF-kappaB, Anticancer. Res. 22(3) (2002) 1561–1568; https://pubmed.ncbi.nlm.nih.gov/12168837/ Search in Google Scholar

10. B. G. Heerdt, M. A. Houston and L. H. Augenlicht, Potentiation by specific short-chain fatty acids of differentiation and apoptosis in human colonic carcinoma cell lines, Cancer Res. 54(12) (1994) 3288–3293; https://pubmed.ncbi.nlm.nih.gov/8205551/ Search in Google Scholar

11. J. P. Segain, D. Raingeard de la Blétière, A. Bourreille, V. Leray, N. Gervois, C. Rosales, L. Ferrier, C. Bonnet, H. M. Blottière, J. P. Galmiche, Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease, Gut 47 (2000) 397–403; https://doi.org/10.1136/gut.47.3.39710.1136/gut.47.3.397172804510940278 Search in Google Scholar

12. D. Zheng, T. Liwinski and E. Elinav, Interaction between microbiota and immunity in health and disease, Cell Res. 30 (2020) 492–506; https://doi.org/10.1038/s41422-020-0332-710.1038/s41422-020-0332-7726422732433595 Search in Google Scholar

13. R. Corrêa-Oliveira, J. L. Fachi, A. Vieira, F. T. Sato and M. A. Vinolo, Regulation of immune cell function by short-chain fatty acids, Clin. Transl. Immunol. 5 (2016) Article ID e73 (8 pages); https://doi.org/10.1038/cti.2016.1710.1038/cti.2016.17485526727195116 Search in Google Scholar

14. U. Böcker, T. Nebe, F. Herweck, L. Holt, A. Panja, C. Jobin, S. Rossol, R. Sartor B and M. V. Singer, Butyrate modulates intestinal epithelial cell-mediated neutrophil migration, Clin. Exp. Immunol. 131(1) (2003) 53–60; https://doi.org/10.1046/j.1365-2249.2003.02056.x10.1046/j.1365-2249.2003.02056.x180861112519386 Search in Google Scholar

15. S. Mitra, M. Exline, F. Habyarimana, M. A. Gavrilin, P. J. Baker, S. L. Masters, M. D. Wewers and A. Sarkar, Microparticulate caspase 1 regulates gasdermin D and pulmonary vascular endothelial cell injury, Am. J. Respir. Cell Mol. Biol. 59(1) (2018) 56–64; https://doi.org/10.1165/rcmb.2017-0393OC10.1165/rcmb.2017-0393OC603987629365280 Search in Google Scholar

16. L. Qu, C. Chen, W. He, Y. Chen, Y. Li, Y. Wen, S. Zhou, Y. Jiang, X. Yang, R. Zhang and L. Shen, Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/AKT/mTOR pathway, Am. J. Transl. Res. 11(4) (2019) 2042–2055; https://pubmed.ncbi.nlm.nih.gov/31105816/ Search in Google Scholar

17. Z. Zhong, E. Sanchez-Lopez and M. Karin, Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases, Clin. Exp. Rheumatol. 34(4 Suppl 98) (2016) 12–16; https://pubmed.ncbi.nlm.nih.gov/27586797/34 Search in Google Scholar

18. J. Dai, X. Zhang, L. Li, H. Chen and Y. Chai, Autophagy inhibition contributes to ROS-producing NLRP3-dependent inflammasome activation and cytokine secretion in high glucose-induced macrophages, Cell Physiol. Biochem. 43(1) (2017) 247–256; https://doi.org/10.1159/00048036710.1159/00048036728854426 Search in Google Scholar

19. J. H. Ko, S. O. Yoon, H. J. Lee, J. Y. Oh, Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFkappaB pathways in autophagy- and p62-dependent manners, Oncotarget 8 (2017) 40817–40831; https://doi.org/10.18632/oncotarget.1725610.18632/oncotarget.17256552222328489580 Search in Google Scholar

20. Q. Liu, D. Zhang, D. Hu, X. Zhou and Y. Zhou, The role of mitochondria in NLRP3 inflammasome activation, Mol. Immunol. 103 (2018) 115–124; https://doi.org/10.1016/j.molimm.2018.09.01010.1016/j.molimm.2018.09.01030248487 Search in Google Scholar

21. Z. Yan, J. Yang, R. Hu, X. Hu and K. Chen, Acinetobacter baumannii infection and IL-17 mediated immunity, Mediators Inflamm. 2016 (2016) Article ID 9834020 (6 pages); https://doi.org/10.1155/2016/983402010.1155/2016/9834020476299826977122 Search in Google Scholar

22. P. Mirmonsef, M. R. Zariffard, D. Gilbert, H. Makinde, A. L. Landay and G. T. Spear, Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands, Am. J. Reprod. Immunol. 67 (2012) 391–400; https://doi.org/10.1111/j.1600-0897.2011.01089.x10.1111/j.1600-0897.2011.01089.x328853622059850 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo