Otwarty dostęp

Critical points in ethylcellulose matrices: Influence of the polymer, drug and filler properties


Zacytuj

1. M. Casas, C. Ferrero and M. R. Jiménez-Castellanos, Graft tapioca starch copolymers as novel excipients for controlled-release matrix tablets, Carbohydr. Polym. 80 (2010) 71-77; DOI: 10.1016/ j.carbpol.2009.10.065.10.1016/j.carbpol.2009.10.065Search in Google Scholar

2. E. Costa, A. Arancibia and J. M. Aïache, Sistemas matriciales, Act. Farm. Bonaerense 23 (2004) 259-265.Search in Google Scholar

3. I. Caraballo, M. Fernández-Arevalo, M. A. Holgado and A. M. Rabasco, Percolation theory: application to the study of the release behaviour from inert matrix systems, Int. J. Pharm. 96 (1993) 175-181; DOI: 10.1016/0378-5173(93)90225-5.10.1016/0378-5173(93)90225-5Search in Google Scholar

4. P. R. Katikaneni, S. M. Upadrashta, S. H. Neau and A. K. Mitra, Ethylcellulose matrix controlled release tablets of a water-soluble drug, Int. J. Pharm. 123 (1995) 119-125; DOI: 10.1016/0378- -5173(95)00060-V.Search in Google Scholar

5. S. I. Pather, I. Rusell, J. A. Syce and S. H. Neau, Sustained release theophylline tablets by direct compression: Part 1: formulation and in vitro testing, Int. J. Pharm. 164 (1998) 1-10; DOI: 10.1016/ S0378-5173(97)00348-7.Search in Google Scholar

6. S. M. Upadrashta, P. R. Katikaneni, G. A. Hileman, S. H. Neau and C. E. Rowlings, Compressibility and compactibility properties of ethylcellulose, Int. J. Pharm. 112 (1994) 173-179; DOI: 10.1016/ 0378-5173(94)90427-8.10.1016/0378-5173(94)90427-8Search in Google Scholar

7. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed., Taylor & Francis, London 1992.Search in Google Scholar

8. I. Caraballo, Factors affecting drug release from hydroxypropyl methyl cellulose matrix systems in the light of classical and percolation theories, Expert Opin. Drug Deliv. 7 (2010) 1291-1301; DOI: 10.1517/17425247.2010.528199.10.1517/17425247.2010.528199Search in Google Scholar

9. H. Leuenberger, B. D. Rohera and C. Haas, Percolation theory - a novel approach to solid dosage form design, Int. J. Pharm. 38 (1987) 109-115; DOI: 10.1016/0378-5173(87)90105-0.10.1016/0378-5173(87)90105-0Search in Google Scholar

10. D. Blattner, M. Kolb and H. Leuenberger, Percolation theory and compactability of binary powder systems, Pharm. Res. 7 (1990) 113-117; DOI: 10.1023/A:1015864415693.10.1023/A:1015864415693Search in Google Scholar

11. J. D. Bonny and H. Leuenberger, Matrix type controlled release systems: I. Effect of percolation on drug dissolution kinetics, Pharm. Acta Helv. 66 (1991) 160-164.Search in Google Scholar

12. J. D. Bonny and H. Leuenberger, Matrix type controlled release systems II. Percolation effects in non-swellable matrices, Pharm. Acta Helv. 68 (1993) 25-33; DOI: 10.1016/0031-6865(93)90005-Q.10.1016/0031-6865(93)90005-QSearch in Google Scholar

13. L. E. Holman and H. Leuenberger, The relationship between solid fraction and mechanical properties of compacts - the percolation theory model approach, Int. J Pharm. 46 (1988) 35-44; DOI: DOI: 10.1016/0378-5173(88)90007-5.10.1016/0378-5173(88)90007-5Search in Google Scholar

14. H. Leuenberger and R. Leu, Formation of a tablet: a site and bond percolation phenomenon, J. Pharm. Sci. 81 (1992) 976-982; DOI: 10.1002/jps.2600811004.10.1002/jps.2600811004Search in Google Scholar

15. I. Caraballo, L. M. Melgoza, J. Alvarez-Fuentes, M. C. Soriano and A. M. Rabasco, Design of controlled release inert matrices of naltrexone hydrochloride based on percolation concepts, Int. J. Pharm. 181 (1999) 23-30; DOI: 10.1016/S0378-5173(98)00415-3.10.1016/S0378-5173(98)00415-3Search in Google Scholar

16. L. M. Melgoza, I. Caraballo, J. Alvarez-Fuentes, M. Millan and A. M. Rabasco, Study of morphine hydrochloride percolation threshold in Eudragit® RS-PM matrices, Int. J. Pharm. 170 (1998) 169-177; DOI: 10.1016/S0378-5173(98)00135-5.10.1016/S0378-5173(98)00135-5Search in Google Scholar

17. E. Castellanos-Gil, I. Caraballo and B. Bataille, Tablet Design, in Pharmaceutical Manufacturing Handbook:Production and Processes (Ed. S. C. Gad), Wiley InterScience, New Jersey 2008, pp. 977-1052.Search in Google Scholar

18. L. M. Melgoza, A. M. Rabasco, H. Sandoval and I. Caraballo, Estimation of the percolation thresholds in dextromethorphan hydrobromide matrices, Eur. J. Pharm. Sci. 12 (2001) 453-459; DOI: 10.1016/S0928-0987(00)00193-7.10.1016/S0928-0987(00)00193-7Search in Google Scholar

19. M. C. Soriano, I. Caraballo, M. Millan, R. T. Piñero, L. M. Melgoza and A. M. Rabasco, Influence of two different types of excipient on drug percolation threshold, Int. J. Pharm. 174 (1998) 63-69; DOI: 10.1016/S0378-5173(98)00255-5.10.1016/S0378-5173(98)00255-5Search in Google Scholar

20. I. Caraballo, M. Fernandez-Arevalo, M. Millan, A.M.Rabasco and H. Leuenberger, Int. J. Pharm. 139 (1996) 177-186; DOI: 10.1016/0378-5173(96)04603-0.10.1016/0378-5173(96)04603-0Search in Google Scholar

21. United States Pharmacopoeia 26, National Formulary 21, USP Convention, Rockwille 2011.Search in Google Scholar

22. T. Higuchi, Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci. 52 (1963) 1145-1149.10.1002/jps.2600521210Search in Google Scholar

23. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm. 15 (1983) 25-35; DOI: 10.1016/0378- -5173(83)90064-9.Search in Google Scholar

24. N. A. Peppas and J. J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation, Int. J. Pharm. 57 (1989) 169-172; DOI: 10.1016/0378-5173(89)90306-2.10.1016/0378-5173(89)90306-2Search in Google Scholar

25. P. L. Ritger and N. A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release 5 (1987) 23-36; DOI: 10.1016/0168-3659(87)90034-4.10.1016/0168-3659(87)90034-4Search in Google Scholar

26. I. Fuertes, A. Miranda, M. Millan and I. Caraballo, Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets, Eur. J. Pharm. Biopharm. 64 (2006) 336-342; DOI: 10.1016/ j.ejpb.2006.05.009.10.1016/j.ejpb.2006.05.00916876392Search in Google Scholar

27. I. Caraballo, M. Millán and A. M. Rabasco, Relationship between drug percolation threshold and particle size in matrix tablets, Pharm. Res. 13 (1996) 387-390; DOI: 10.1023/A:1016088424993.10.1023/A:1016088424993Search in Google Scholar

28. M. Millán, I. Caraballo and A. M. Rabasco, The role of the drug/excipient particle size ratio in the percolation model for tablets, Pharm. Res. 15 (1998) 216-220; DOI: 10.1023/A:1011906416291.10.1023/A:1011906416291Search in Google Scholar

29. I. Caraballo, M. Millan, A. Fini, L. Rodriguez and C. Cavallari, Percolation thresholds in ultrasound compacted tablets, J. Control. Release 69 (2000) 345-355; DOI: 10.1016/S0168-3659(00)00307-2. 10.1016/S0168-3659(00)00307-2Search in Google Scholar

eISSN:
1846-9558
ISSN:
1330-0075
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other