Otwarty dostęp

Decolorization of Two Dyes Using White Rot Fungus P. ostreatus (BWPH) Strain and Evaluation of Zootoxicity of Post Process Samples


Zacytuj

R. Dai, J. Chen, J. Lin, S. Xiao, S. Chen, and Y. Deng, (2009). Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH, J. Hazard. Mater., 170(1), 141–143. doi: 10.1016/j.jhazmat.2009.04.122. DaiR. ChenJ. LinJ. XiaoS. ChenS. DengY. 2009 Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH J. Hazard. Mater. 170 1 141 143 10.1016/j.jhazmat.2009.04.122 Open DOISearch in Google Scholar

Y. Wu, T. Li, and L. Yang, (2012). Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: A review, Bioresour. Technol., 107, 10–18. doi: 10.1016/j.biortech.2011.12.088. WuY. LiT. YangL. 2012 Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: A review Bioresour. Technol. 107 10 18 10.1016/j.biortech.2011.12.088 Open DOISearch in Google Scholar

Z. Ghobadi Nejad, S. M. Borghei, and S. Yaghmaei, (2019). Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism, Int. J. Environ. Sci. Technol., 16(12), 7805–7816, doi: 10.1007/s13762-019-02226-5. Ghobadi NejadZ. BorgheiS. M. YaghmaeiS. 2019 Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism Int. J. Environ. Sci. Technol. 16 12 7805 7816 10.1007/s13762-019-02226-5 Open DOISearch in Google Scholar

A. Pandey, P. H. Tripathi, A. H. Tripathi, S. C. Pandey, and S. Gangola, (2019). Omics technology to study bioremediation and respective enzymes. Elsevier Inc. PandeyA. TripathiP. H. TripathiA. H. PandeyS. C. GangolaS. 2019 Omics technology to study bioremediation and respective enzymes Elsevier Inc. 10.1016/B978-0-12-818307-6.00002-0 Search in Google Scholar

M. Solís, A. Solís, H. I. Pérez, N. Manjarrez, and M. Flores, (2012). Microbial decolouration of azo dyes: A review, Process Biochem., 47(12), 1723–1748, doi: 10.1016/j.procbio.2012.08.014. SolísM. SolísA. PérezH. I. ManjarrezN. FloresM. 2012 Microbial decolouration of azo dyes: A review Process Biochem. 47 12 1723 1748 10.1016/j.procbio.2012.08.014 Open DOISearch in Google Scholar

R. G. Saratale et al., (2013). Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS, J. Biosci. Bioeng., 115(6), 658–667. doi: 10.1016/j.jbiosc.2012.12.009. SarataleR. G. 2013 Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS J. Biosci. Bioeng. 115 6 658 667 10.1016/j.jbiosc.2012.12.009 Open DOISearch in Google Scholar

M. Berradi et al., (2019). “Textile finishing dyes and their impact on aquatic environs,” Heliyon, 5(11), doi: 10.1016/j.heliyon.2019.e02711. BerradiM. 2019 “Textile finishing dyes and their impact on aquatic environs,” Heliyon 5 11 10.1016/j.heliyon.2019.e02711 Open DOISearch in Google Scholar

M. Qin et al., (2018). Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye, J. Mater. Sci. Mater. Electron., 29(11), 9740–9744, doi: 10.1007/s10854-018-9011-6. QinM. 2018 Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye J. Mater. Sci. Mater. Electron. 29 11 9740 9744 10.1007/s10854-018-9011-6 Open DOISearch in Google Scholar

D. Kalpana, N. Velmurugan, J. H. Shim, B. T. Oh, K. Senthil, and Y. S. Lee, (2012). Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus, J. Environ. Manage., 111, 142–149. doi: 10.1016/j.jenvman.2012.06.041. KalpanaD. VelmuruganN. ShimJ. H. OhB. T. SenthilK. LeeY. S. 2012 Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus J. Environ. Manage. 111 142 149 10.1016/j.jenvman.2012.06.041 Open DOISearch in Google Scholar

S. Rodríguez-Couto, (2017). Industrial and environmental applications of white-rot fungi, Mycosphere, 8(3), 456–466, doi: 10.5943/mycosphere/8/3/7. Rodríguez-CoutoS. 2017 Industrial and environmental applications of white-rot fungi Mycosphere 8 3 456 466 10.5943/mycosphere/8/3/7 Open DOISearch in Google Scholar

C. Y. Lai, C. H. Wu, C. T. Meng, and C. W. Lin, (2017). Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode, Appl. Energy, 188, 392–398, doi: 10.1016/j.apenergy.2016.12.044. LaiC. Y. WuC. H. MengC. T. LinC. W. 2017 Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode Appl. Energy 188 392 398 10.1016/j.apenergy.2016.12.044 Open DOISearch in Google Scholar

S. Rodríguez-Couto, J. F. Osma, and J. L. Toca-Herrera, (2009). “Removal of synthetic dyes by an eco-friendly strategy,” Eng. Life Sci., 9(2), 116–123, doi: 10.1002/elsc.200800088. Rodríguez-CoutoS. OsmaJ. F. Toca-HerreraJ. L. 2009 “Removal of synthetic dyes by an eco-friendly strategy,” Eng. Life Sci. 9 2 116 123 10.1002/elsc.200800088 Open DOISearch in Google Scholar

A. Grelska and M. Noszczyńska, (2020). White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from waste-water, Environ. Sci. Pollut. Res., 27(32), 39958–39976, doi: 10.1007/s11356-020-10382-2. GrelskaA. NoszczyńskaM. 2020 White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from waste-water Environ. Sci. Pollut. Res. 27 32 39958 39976 10.1007/s11356-020-10382-2 Open DOISearch in Google Scholar

M. Jureczko, W. Przystaś, T. Krawczyk, W. Gonciarz, and K. Rudnicka, (2021). White-rot fungi-mediated biodegradation of cytostatic drugs - bleomycin and vincristine, J. Hazard. Mater., 407(July 2020), doi: 10.1016/j.jhazmat.2020.124632. JureczkoM. PrzystaśW. KrawczykT. GonciarzW. RudnickaK. 2021 White-rot fungi-mediated biodegradation of cytostatic drugs - bleomycin and vincristine J. Hazard. Mater. 407 July 2020 10.1016/j.jhazmat.2020.124632 Open DOISearch in Google Scholar

G. A. L. Vieira et al., (2021). Marine associated microbial consortium applied to RBBR textile dye detoxification and decolorization: Combined approach and metatranscriptomic analysis, Chemosphere, 267. doi: 10.1016/j.chemosphere.2020.129190. VieiraG. A. L. 2021 Marine associated microbial consortium applied to RBBR textile dye detoxification and decolorization: Combined approach and metatranscriptomic analysis Chemosphere 267 10.1016/j.chemosphere.2020.129190 Open DOISearch in Google Scholar

M. Jureczko and W. Przystaś, (2019). Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment, Ecotoxicol. Environ. Saf., 172(October 2018), 210–215, doi: 10.1016/j.ecoenv.2019.01.074. JureczkoM. PrzystaśW. 2019 Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment Ecotoxicol. Environ. Saf. 172 October 2018 210 215 10.1016/j.ecoenv.2019.01.074 Open DOISearch in Google Scholar

J. A. Mir-Tutusaus, R. Baccar, G. Caminal, and M. Sarrà, (2018). Can white-rot fungi be a real waste-water treatment alternative for organic micropollutants removal? A review, Water Res., 138, 137–151, doi: 10.1016/j.watres.2018.02.056. Mir-TutusausJ. A. BaccarR. CaminalG. SarràM. 2018 Can white-rot fungi be a real waste-water treatment alternative for organic micropollutants removal? A review, Water Res. 138 137 151 10.1016/j.watres.2018.02.056 Open DOISearch in Google Scholar

T. Hadibarata and R. A. Kristanti, (2013). Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022, Bioprocess Biosyst. Eng., 36(4), 461–468, doi: 10.1007/s00449-012-0803-4. HadibarataT. KristantiR. A. 2013 Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022 Bioprocess Biosyst. Eng. 36 4 461 468 10.1007/s00449-012-0803-4 Open DOISearch in Google Scholar

M. Gahlout, S. Gupte, and A. Gupte, (2013). Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1, 3 Biotech, 3(2), 143–152, doi: 10.1007/s13205-012-0079-z. GahloutM. GupteS. GupteA. 2013 Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1 3 Biotech 3 2 143 152 10.1007/s13205-012-0079-z Open DOISearch in Google Scholar

S. Chakraborty, B. Basak, S. Dutta, B. Bhunia, and A. Dey, (2013). Bioresource Technology Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6, 147, 662–666, doi: 10.1016/j.biortech.2013.08.117. ChakrabortyS. BasakB. DuttaS. BhuniaB. DeyA. 2013 Bioresource Technology Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6 147 662 666 10.1016/j.biortech.2013.08.117 Open DOISearch in Google Scholar

T. Hadibarata, A. R. M. Yusoff, and R. A. Kristanti, (2012). Acceleration of anthraquinone-type dye removal by white-rot fungus under optimized environmental conditions, Water. Air. Soil Pollut., 223(8), 4669–4677, doi: 10.1007/s11270-012-1177-6. HadibarataT. YusoffA. R. M. KristantiR. A. 2012 Acceleration of anthraquinone-type dye removal by white-rot fungus under optimized environmental conditions Water. Air. Soil Pollut. 223 8 4669 4677 10.1007/s11270-012-1177-6 Open DOISearch in Google Scholar

R. Lu et al., (2016). White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations, Bioprocess Biosyst. Eng., 39(3), 381–390, doi: 10.1007/s00449-015-1521-5. LuR. 2016 White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations Bioprocess Biosyst. Eng. 39 3 381 390 10.1007/s00449-015-1521-5 Open DOISearch in Google Scholar

P. D. Kunjadia, G. V. Sanghvi, A. P. Kunjadia, P. N. Mukhopadhyay, and G. S. Dave, (2016). Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes, Springerplus, 5(1), doi: 10.1186/s40064-016-3156-7. KunjadiaP. D. SanghviG. V. KunjadiaA. P. MukhopadhyayP. N. DaveG. S. 2016 Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes Springerplus 5 1 10.1186/s40064-016-3156-7 Open DOISearch in Google Scholar

R. Alam et al., (2021). Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment, J. Hazard. Mater., 405(July), 124176, doi: 10.1016/j.jhazmat.2020.124176. AlamR. 2021 Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment J. Hazard. Mater. 405 July 124176 10.1016/j.jhazmat.2020.124176 Open DOISearch in Google Scholar

W. Przystaś, E. Zabłocka-Godlewska, and E. Grabińska-Sota, (2018). Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports, Brazilian J. Microbiol., 49(2), 285–295, doi: 10.1016/j.bjm.2017.06.010. PrzystaśW. Zabłocka-GodlewskaE. Grabińska-SotaE. 2018 Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports Brazilian J. Microbiol. 49 2 285 295 10.1016/j.bjm.2017.06.010 Open DOISearch in Google Scholar

M. J. Puchana-Rosero et al., (2017). Fungal biomass as biosorbent for the removal of Acid Blue 161 dye in aqueous solution, Environ. Sci. Pollut. Res., 24(4), 4200–4209, doi: 10.1007/s11356-016-8153-4. Puchana-RoseroM. J. 2017 Fungal biomass as biosorbent for the removal of Acid Blue 161 dye in aqueous solution Environ. Sci. Pollut. Res. 24 4 4200 4209 10.1007/s11356-016-8153-4 Open DOISearch in Google Scholar

A. A. F. Mostafa, M. S. Elshikh, A. A. Al-Askar, T. Hadibarata, A. Yuniarto, and A. Syafiuddin, (2019). “Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium, Bioprocess Biosyst. Eng., 42(9), 1483–1494, doi: 10.1007/s00449-019-02144-3. MostafaA. A. F. ElshikhM. S. Al-AskarA. A. HadibarataT. YuniartoA. SyafiuddinA. 2019 “Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium Bioprocess Biosyst. Eng. 42 9 1483 1494 10.1007/s00449-019-02144-3 Open DOISearch in Google Scholar

B. L. Alderete et al., (2021). Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment, Chemosphere, 263. doi: 10.1016/j.chemosphere.2020.128291. AldereteB. L. 2021 Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment Chemosphere 263 10.1016/j.chemosphere.2020.128291 Open DOISearch in Google Scholar

T. Robinson, B. Chandran, and P. Nigam, (2001). Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes, Enzyme Microb. Technol., 29(8–9), 575–579, doi: 10.1016/S0141-0229(01)00430-6. RobinsonT. ChandranB. NigamP. 2001 Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes Enzyme Microb. Technol. 29 8–9 575 579 10.1016/S0141-0229(01)00430-6 Open DOISearch in Google Scholar

M. C. Collivignarelli, A. Abbà, M. Carnevale Miino, and S. Damiani, (2019). Treatments for color removal from wastewater: State of the art, J. Environ. Manage., 236(October 2018), 727–745. doi: 10.1016/j.jenvman.2018.11.094. CollivignarelliM. C. AbbàA. Carnevale MiinoM. DamianiS. 2019 Treatments for color removal from wastewater: State of the art J. Environ. Manage. 236 October 2018 727 745 10.1016/j.jenvman.2018.11.094 Open DOISearch in Google Scholar

W. Przystas, E. Zablocka-Godlewska, and E. Grabinska-Sota, (2012). Biological removal of azo and triphenylmethane dyes and toxicity of process byproducts, Water. Air. Soil Pollut., 223(4), 1581–1592, doi: 10.1007/s11270-011-0966-7. PrzystasW. Zablocka-GodlewskaE. Grabinska-SotaE. 2012 Biological removal of azo and triphenylmethane dyes and toxicity of process byproducts Water. Air. Soil Pollut. 223 4 1581 1592 10.1007/s11270-011-0966-7 Open DOISearch in Google Scholar

W. Przystaś, E. Zabłocka-Godlewska, and E. Grabińska-Sota, (2019). Pleurotus ostreatus as a species with potentially high effectiveness in the removal of synthetic dyes belonging to different classes, Desalin. Water Treat., 161, 376–386, doi: 10.5004/dwt.2019.24314. PrzystaśW. Zabłocka-GodlewskaE. Grabińska-SotaE. 2019 Pleurotus ostreatus as a species with potentially high effectiveness in the removal of synthetic dyes belonging to different classes Desalin. Water Treat. 161 376 386 10.5004/dwt.2019.24314 Open DOISearch in Google Scholar

eISSN:
2720-6947
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Architecture and Design, Architecture, Architects, Buildings