Otwarty dostęp

Cardiomyopathies – genetic and molecular issues

,  oraz   
01 paź 2024

Zacytuj
Pobierz okładkę

McKenna WJ, Maron BJ, Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circ Res. 2017;121(7):722-30; DOI:10.1161/CIRCRESAHA.117.309711. Search in Google Scholar

Ware SM, Wilkinson JD, Tariq M, Schubert JA, Sridhar A, Colan SD, Shi L, Canter CE, Hsu DT, Webber SA, Dodd DA, Everitt MD, Kantor PF, Addonizio LJ, Jefferies JL, Rossano JW, Pahl E, Rusconi P, Chung WK, Lee T, Towbin JA, Lal AK, Bhatnagar S, Aronow B, Dexheimer PJ, Martin LJ, Miller EM, Sleeper LA, Razoky H, Czachor J, Lipshultz SE, Pediatric Cardiomyopathy Registry Study Group. Genetic causes of cardiomyopathy in children: first results from the pediatric cardiomyopathy genes study. J Am Heart Assoc. 2021;10(9):e017731; DOI:10.1161/JAHA.120.017731. Search in Google Scholar

Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, Cirillo A, Caiazza M, Fusco A, Esposito A, Fimiani F, Palmiero G, Pacileo G, CalabroÌ P, Russo MG, Limongelli G. Hypertrophic cardiomyopathy in children: pathophysiology, diagnosis, and treatment of non-sarcomeric causes. Front. Pediatr. 2021;9:632293; DOI:10.3389/fped.2021.632293. Search in Google Scholar

Salemi VMC, Mohty D, de Altavila SLL, de Melo MDT, Kalil Filho R, Bocchi EA. Insights into the classification of cardiomyopathies: past, present, and future directions. Clinics. 2021;76:e2808; DOI:10.6061/clinics/2021/e2808. Search in Google Scholar

Marian AJ. Molecular genetic basis of hypertrophic cardiomyopathy. Circ Res. 2021;128(10):1533-53; DOI:10.1161/CIRCRESAHA.121.318346. Search in Google Scholar

Geske J, Ommen S, Gersh B. Hypertrophic cardiomyopathy: clinical update. JACC Heart Fail. 2018;6(5):364-75; DOI:10.1016/j.jchf.2018.02.010. Search in Google Scholar

Posafalvi A, Herkert JC, Sinke RJ, van den Berg MP, Mogensen J, Jongbloed JD, van Tintelen JP. Clinical utility gene card for: dilated cardiomyopathy (CMD). Eur J Hum Genet. 2013;21(10); DOI:10.1038/ejhg.2012.276. Search in Google Scholar

Schaufelberger M. Cardiomyopathy and pregnancy. Heart. 2019;105(20):1543-51; DOI:10.1136/heartjnl-2018-313476. Search in Google Scholar

Kosobudzki M, Bortkiewicz A. Genetyczne uwarunkowania chorób układu krążenia. Forum Medycyny Rodzinn ej. 2012;6(1):1-13. Search in Google Scholar

Watkins H, Ashrafian H, Redwood C. Dziedziczne kardiomiopatie. Kardiologia po Dyplomie. 2011;10(9):12-29. Search in Google Scholar

Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871-86; DOI:10.1016/j.jacc.2016.08.079. Search in Google Scholar

Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB, American Heart Association, Council on Clinical Cardiology Heart Failure and Transplantation Committee, Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups, Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee, Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups, Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807-16; DOI:10.1161/CIRCULATIONAHA.106.174287. Search in Google Scholar

Elliott P, Andersson B, Arbustini E, Bilińska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenn a WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Klasyfikacja kardiomiopatii. Stanowisko Grupy Roboczej Chorób Mięśnia Sercowego i Osierdzia Europejskiego Towarzystwa Kardiologicznego. Kardiol Pol. 2008;66(5):533-40; DOI: 10.33963/v.kp.80540. Search in Google Scholar

Yamada T, Nomura S. Recent findings related to cardiomyopathy and genetics. Int J Mol Sci. 2021;22(22):12522; DOI:10.3390/ijms222212522. Search in Google Scholar

Kimura A. Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet. 2016;61(1):41-50; DOI:10.1038/jhg.2015.83. Search in Google Scholar

Brieler J, Breeden MA, Tucker J. Cardiomyopathy: an overview. Am Fam Physician. 2017;96(10):640-6. Search in Google Scholar

Maj K, Major K, Lelonek M. HFpEF mimics: hypertrophic cardiomyopathy in light of the 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure with Preserved Ejection Fraction. Folia Cardiol. 2023;18(4):182-6; DOI:10.5603/fc.96348. Search in Google Scholar

Marques MA, de Oliveira GA. Cardiac troponin and tropomyosin: structural and cellular perspectives to unveil the hypertrophic cardiomyopathy phenotype. Front Physiol. 2016;7:429; DOI:10.3389/fphys.2016.00429. Search in Google Scholar

Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249-54; DOI:10.1016/j.jacc.2015.01.019. Search in Google Scholar

Carrier L, Mearini G, Stathopoulou K, Cuello F. Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene. 2015;573(2):188-97; DOI:10.1016/j.gene.2015.09.008. Search in Google Scholar

Wolf CM. Hypertrophic cardiomyopathy: genetics and clinical perspectives. Cardiovasc Diagn Ther. 2019;9(Suppl 2):S388-S415; DOI:10.21037/cdt.2019.02.01. Search in Google Scholar

Akhtar M, Elliott P. The genetics of hypertrophic cardiomyopathy. Glob Cardiol Sci Pract. 2018;2018(3):36; DOI:10.21542/gcsp.2018.36. Search in Google Scholar

Toepfer CN, Wakimoto H, Garfinkel AC, McDonough B, Liao D, Jiang J, Tai AC, Gorham JM, Lunde IG, Lun M, Lynch TL 4th, McNamara JW, Sadayappan S, Redwood CS, Watkins HC, Seidman JG, Seidman CE. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci Transl Med. 2019;11(476):eaat1199; DOI:10.1126/scitranslmed.aat1199. Search in Google Scholar

Tudurachi BS, Zăvoi A, Leonte A, Țăpoi L, Ureche C, Bîrgoan SG, Chiuariu T, Anghel L, Radu R, Sascău RA, Stătescu C. An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy. Int J Mol Sci. 2023;24(13):10510; DOI:10.3390/ijms241310510. Search in Google Scholar

Shafaattalab S, Li AY, Gunawan MG, Kim B, Jayousi F, Maaref Y, Song Z, Weiss JN, Solaro RJ, Qu Z, Tibbits GF. Mechanisms of arrhythmogenicity of hypertrophic cardiomyopathy-associated troponin T (TNNT2) variant I79N. Front Cell Dev Biol. 2021;9:787581; DOI:10.3389/fcell.2021.787581. Search in Google Scholar

Dorsch LM, Kuster DWD, Jongbloed JDH, Boven LG, van Spaendonck- Zwarts KY, Suurmeijer AJH, Vink A, du Marchie Sarvaas GJ, van den Berg MP, van der Velden J, Brundel BJJM, van der Zwaag PA. The effect of tropomyosin variants on cardiomyocyte function and structure that underlie different clinical cardiomyopathy phenotypes. Int J Cardiol. 2021;323:251-8; DOI:10.1016/j.ijcard.2020.08.101. Search in Google Scholar

Beavers DL, Landstrom AP, Chiang DY, Wehrens XH. Emerging roles of junctophilin-2 in the heart and implications for cardiac diseases. Cardiovascular Res. 2014;103(2):198-205; DOI:10.1093/cvr/cvu151. Search in Google Scholar

Hof IE, van der Heijden JF, Kranias EG, Sanoudou D, de Boer RA, van Tintelen JP, van der Zwaag PA, Doevendans PA. Prevalence and cardiac phenotype of patients with a phospholamban mutation. Neth Heart J. 2019;27(2):64-9; DOI:10.1007/s12471-018-1211-4. Search in Google Scholar

Simmerman HK, Jones LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. 1998;78(4):921-47; DOI:10.1152/physrev.1998.78.4.921. Search in Google Scholar

Wadmore K, Azad AJ, Gehmlich K. The role of Z-disc proteins in myopathy and cardiomyopathy. Int J Mol Sci. 2021;22(6):3058; DOI:10.3390/ijms22063058. Search in Google Scholar

Ranta-Aho J, Olive M, Vandroux M, Roticiani G, Dominguez C, Johari M, Torella A, Böhm J, Turon J, Nigro V, Hackman P, Laporte J, Udd B, Savarese M. Mutation update for the ACTN2 gene. Hum Mutat. 2022;43(12):1745-56; DOI:10.1002/humu.24470. Search in Google Scholar

Mao Z, Nakamura F. Structure and function of filamin C in the muscle Z-disc. Int J Mol. Sci. 2020;21(8):2696; DOI:10.3390/ijms21082696. Search in Google Scholar

Bang ML, Mudry RE, McElhinn y AS, Trombitás K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol. 2001;153(2):413-28; DOI:10.1083/jcb.153.2.413. Search in Google Scholar

Ibrahim M, Siedlecka U, Buyandelger B, Harada M, Rao C, Moshkov A, Bhargava A, Schneider M, Yacoub MH, Gorelik J, Knöll R, Terracciano CM. A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet. 2013;22(2):372-83, DOI:10.1093/hmg/dds434. Search in Google Scholar

Li Z, Ai T, Samani K, Xi Y, Tzeng HP, Xie M, Wu S, Ge S, Taylor MD, Dong JW, Cheng J, Ackerman MJ, Kimura A, Sinagra G, Brunelli L, Faulkner G, Vatta M. A ZASP missense mutation, S196L, leads to cytoskeletal and electrical abnormalities in a mouse model of cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3(6):646-56; DOI:10.1161/CIRCEP.109.929240. Search in Google Scholar

Marcus FI, Edson S, Towbin JA. Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol. 2013;61(19):1945-8; DOI:10.1016/j.jacc.2013.01.073 Search in Google Scholar

Jacoby D, McKenna WJ. Genetics of inherited cardiomyopathy. Eur Heart J. 2012;33(3):296-304; DOI:10.1093/eurheartj/ehr260. Search in Google Scholar

Kim KH, Pereira NL. Genetics of cardiomyopathy: clinical and mechanistic implications for heart failure. Korean Circ J. 2021;51(10):797; DOI:10.4070/kcj.2021.0154. Search in Google Scholar

Krahn AD, Wilde AAM, Calkins H, La Gerche A, Cadrin-Tourigny J, Roberts JD, Han HC. Arrhythmogenic right ventricular cardiomyopathy. JACC Clin Electrophysiol. 2022;8(4):533-53; DOI:10.1016/j.jacep.2021.12.002. Search in Google Scholar

Ohno S. The genetic background of arrhythmogenic right ventricular cardiomyopathy. J Arrhythm. 2016;32(5):398-403; DOI:10.1016/j.joa.2016.01.006. Search in Google Scholar

Campuzano O, Alcalde M, Allegue C, Iglesias A, García-Pavía P, Partemi S, Oliva A, Pascali VL, Berne P, Sarquella-Brugada G, Brugada J, Brugada P, Brugada R. Genetics of arrhythmogenic right ventricular cardiomyopathy. J Med Genet. 2013;50(5):280-9; DOI:10.1136/jmedgenet-2013-101523. Search in Google Scholar

Bradford WH, Zhang J, Gutierrez-Lara EJ, Liang Y, Do A, Wang TM, Nguyen L, Mataraarachchi N, Wang J, Gu Y, McCulloch A, Peterson KL, Sheikh F. Plakophilin 2 gene therapy prevents and rescues arrhythmogenic right ventricular cardiomyopathy in a mouse model harboring patient genetics. Nat Cardiovasc Res. 2023;2(12):1246-61; DOI:10.1038/s44161-023-00370-3. Search in Google Scholar

Lee JYW, McGrath JA. Mutations in genes encoding desmosomal proteins: spectrum of cutaneous and extracutaneous abnormalities. Br J Dermatol. 2021;184(4):596-605; DOI:10.1111/bjd.19342. Search in Google Scholar

Schlipp A, Schinner C, Spindler V, Vielmuth F, Gehmlich K, Syrris P, Mckenna JW, Dendorfer A, Hartlieb E, Waschke J. Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc Res. 2014;104(2):245-57; DOI:10.1093/cvr/cvu206. Search in Google Scholar

Antoniades L, Tsatsopoulou A, Anastasakis A, Syrris P, Asimaki A, Panagiotakos D, Zambartas C, Stefanadis C, Mckenna WJ, Protonotarios N. Arrhythmogenic right ventricular cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families from Greece and Cyprus: genotype–phenotype relations, diagnostic features and prognosis. Eur Heart J. 2006;27(18):2208-16; DOI:10.1093/eurheartj/ehl184. Search in Google Scholar

Smith ED, Lakdawala NK, Papoutsidakis N, Aubert G, Mazzanti A, McCanta AC, Agarwal PP, Arscott P, Dellefave-Castillo LM, Vorovich EE, Nutakki K, Wilsbacher LD, Priori SG, Jacoby DL, McNally EM, Helms AS. Desmoplakin cardiomyopathy, a fibrotic and inflammatory form of cardiomyopathy distinct from typical dilated or arrhythmogenic right ventricular cardiomyopathy. Circulation. 2020;141(23):1872-84; DOI:10.1161/CIRCULATIONAHA.119.044934. Search in Google Scholar

Yang Z, Bowles NE, Scherer SE, Taylor MD, Kearney DL, Ge S, Nadvoretskiy VV, DeFreitas G, Carabello B, Brandon LI, Godsel LM, Green KJ, Saffitz JE, Li H, Danieli GA, Calkins H, Marcus F, Towbin JA. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res. 2006;99(6):646-55; DOI:10.1161/01.RES.0000241482.19382.c6. Search in Google Scholar

Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet. 2015;386(9995):813-25; DOI:10.1016/S0140-6736(14)61282-4. Search in Google Scholar

Lorca R, Martín M, Pascual I, Astudillo A, Molina BD, Cigarrán H, Cuesta-Llavona E, Avanzas P, Reguero JJR, Coto E, Morís C, Gómez J. Characterization of left ventricular non-compaction cardiomyopathy. J. Clin. Med. 2020;9(8):2524; DOI:10.3390/jcm9082524. Search in Google Scholar

Dong X, Fan P, Tian T, Yang Y, Xiao Y, Yang K, Liu Y, Zhou Y. Recent advancements in the molecular genetics of left ventricular noncompaction cardiomyopathy. Clinica Chimica Acta. 2017;465:40-4; DOI:10.1016/j. cca.2016.12.013. Search in Google Scholar

Banankhah P, Fishbein GA, Dota A, Ardehali R. Cardiac manifestations of PRKAG2 mutation. BMC Med Genet. 2018;19(1):1-4, DOI:10.1186/s12881-017-0512-6. Search in Google Scholar

Sternick EB. PRKAG2 cardiomyopathy. Arq Bras Cardiol. 2022;119(5):689-90; DOI:10.36660/ABC.20220694. Search in Google Scholar

Gong X, Yu P, Wu T, He Y, Zhou K, Hua Y, Lin S, Wang T, Huang H, Li Y. Controversial molecular functions of CBS versus non-CBS domain variants of PRKAG2 in arrhythmia and cardiomyopathy: A case report and literature review. Mol Genet Genomic Med. 2022;10(7):e1962; DOI:10.1002/MGG3.1962. Search in Google Scholar

Gollob MH. Modulating phenotypic expression of the PRKAG2 cardiac syndrome. Circulation. 2008;117(2):134-5; DOI:10.1161/CIRCULATIONAHA.107.747345. Search in Google Scholar

Wolf CM, Arad M, Ahmad F, Sanbe A, Bernstein SA, Toka O, Konno T, Morley G, Robbins J, Seidman J, Seidman C, Berul C. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations. Circulation. 2008;117(2):144-54; DOI:10.1161/CIRCULATIONAHA.107.726752. Search in Google Scholar

Lopez-Sainz A, Dominguez F, Lopes LR, Ochoa JP, Barriales-Villa R, Climent V, Linschoten M, Tiron C, Chiriatti C, Marques N, Rasmussen TB, Espinosa MA, Beinart R, Quarta G, Cesar S, Field E, Garcia-Pinilla JM, Bilinska Z, Muir AR, Roberts AM, Santas E, Zorio E, Peña-Peña ML, Navarro M, Fernandez A, Palomino-Doza J, Azevedo O, Lorenzini M, García-Álvarez MI, Bento D, Jensen MK, Méndez I, Pezzoli L, Sarquella-Brugada G, Campuzano O, Gonzalez-Lopez E, Mogensen J, Kaski JP, Arad M, Brugada R, Asselbergs FW, Monserrat L, Olivotto I, Elliott PM, Garcia-Pavia P, Barriales R, Larrañaga-Moreira JM, Alonso-García D, Cárdenas-Reyes IJ, Cicerchia M, García-Ferro G, García-Hernández S, Nöel-Bröger M, Ortiz M, Azevedo P, Bispo J, Mota T, Fernandes R, Costa H, Doza JP, Salguero-Bodes R, Valverde-Gomez M, Espinosa MA, Mendez I, Cobo-Marcos M, Domínguez F, Escobar L, González-López E, López-Sainz Á, Segovia-Cubero J, Vilches S, Garcia-Pinilla JM, Robles-Mezcua A, López-Garrido M, Hidalgo LM, Abad VD, Sabater-Molina M, Gimeno-Blanes JR, Barton PJ, Cook SA, Ware JS, Syrris P, Truszkowska G, Michalak E, Ploski R, Bilinska Z, Asselbergs F, Baas AF, Dooijes D. Clinical features and natural history of PRKAG2 variant cardiac glycogenosis. J Am Coll Cardiol. 2020;76(2):186-97; DOI:10.1016/J.JACC.2020.05.029. Search in Google Scholar

Cheng Z, Fang Q. Danon disease: focusing on heart. J Hum Genet. 2012;57(7):407-10; DOI:10.1038/jhg.2012.72. Search in Google Scholar

Endo Y, Furuta A, Nishino I. Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol. 2015;129(3):39188; DOI:10.1007/s00401-015-1385-4. Search in Google Scholar

Cenacchi G, Papa V, Pegoraro V, Marozzo R, Fanin M, Angelini C. Review: Danon disease: review of natural history and recent advances. Neuropathol Appl Neurobiol. 2020;46(4):303-22; DOI:10.1111/nan.12587. Search in Google Scholar

Arad M. Cardiac Danon disease: insights and challenges. Int J Cardiol. 2017;245:211-2; DOI:10.1016/j.ijcard.2017.07.106. Search in Google Scholar

Rowland TJ, Sweet ME, Mestroni L, Taylor MRG. Danon disease – dysregulation of autophagy in a multisystem disorder with cardiomyopathy. J Cell Sci. 2016;129(11):2135-43; DOI:10.1242/jcs.184770. Search in Google Scholar

Brambatti M, Caspi O, Maolo A, Koshi E, Greenberg B, Taylor MRG, Adler E. Danon disease: gender differences in presentation and outcomes. Int J Cardiol. 2019;286:92-8; DOI:10.1016/J.IJCARD.2019.01.020. Search in Google Scholar

El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med. 3:(25); DOI:10.3389/fcvm.2016.00025. Search in Google Scholar

Meyers DE, Haseeb F, Basha I, Koenig MK. Mitochondrial cardiomyopathy. Tex Heart Inst J. 2013;40(4):385-94. Search in Google Scholar

Abriel H, Zaklyazminskaya E V. Cardiac channelopathies: genetic and molecular mechanisms. Gene. 2013;517(1):1-11; DOI:10.1016/J. GENE.2012.12.061. Search in Google Scholar

Fernández-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O. Cardiac channelopathies and sudden death: recent clinical and genetic advances. Biology. 2017;6(1):7; DOI:10.3390/BIOLOGY6010007. Search in Google Scholar

Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies that lead to sudden cardiac death: clinical and genetic aspects. Heart Lung Circ. 2019;28(1):22-30; DOI:10.1016/J.HLC.2018.09.007. Search in Google Scholar

Dotzler SM, Kim CSJ, Gendron WAC, Zhou W, Dan Ye, Bos JM, Tester DJ, Barry MA, Ackerman MJ. Suppression-replacement KCNQ1 gene therapy for type 1 long QT syndrome. Circulation. 2021;143(14):1411-25; DOI:10.1161/CIRCULATIONAHA.120.051836. Search in Google Scholar

Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel: from gene to physiological function. Physiology. 2005;20(6):408-16; DOI:10.1152/physiol.00031.2005. Search in Google Scholar

Kekenes-Huskey PM, Burgess DE, Sun B, Bartos DC, Rozmus ER, Anderson CL, January CT, Eckhardt LL, Delisle BP. Mutation-specific differences in Kv7.1 (KCNQ1) and Kv11.1 (KCNH2) channel dysfunction and long QT syndrome phenotypes. Intern J of Molec Scien 2022;23(13):7389; DOI:10.3390/ijms23137389. Search in Google Scholar

Fowler ED, Zissimopoulos S. Molecular, subcellular, and arrhythmogenic mechanisms in genetic RyR2 disease. Biomolecules. 2022;12(8):1030; DOI:10.3390/biom12081030. Search in Google Scholar

McNair WP, Ku L, Taylor MR, Fain PR, Dao D, Wolfel E, Mestroni L, Familial Cardiomyopathy Registry Research Group. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation. 2004;110(15):2163-7; DOI:10.1161/01. CIR.0000144458.58660.BB. Search in Google Scholar

Wilde AAM, Amin AS. Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. J Am Coll Cardiol EP. 2018;4(5):569-79; DOI:10.1016/j.jacep.2018.03.006. Search in Google Scholar

Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM, Zingman LV, Pang YP, Alekseev AE, Terzic A. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004;36(4):382-7; DOI:10.1038/ng1329. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Biologia molekularna, Biochemia