Otwarty dostęp

Protective and multi-organ effects of MOTS-c and other mitochondrial-derived peptides in the endocrine system


Zacytuj

Schaefer AM, Walker M, Turnbull DM, Taylor RW. Endocrine disorders in mitochondrial disease. Mol Cell Endocrinol. 2013;379(1-2):2-11; DOI:10.1016/j.mce.2013.06.004. Search in Google Scholar

Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S. Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol. 2017;13:92-104; DOI:10.1038/nrendo.2016.151. Search in Google Scholar

Wu Y, Sun L, Zhuang Z, Hu X, Dong D. Mitochondrial-derived peptides in diabetes and its complications. Front Endocrinol (Lausanne). 2022;12:808120; DOI:10.3389/fendo.2021.808120. Search in Google Scholar

Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ, Lee C. Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab. 2020;319(4):E659-66; DOI:10.1152/ajpendo.00249.2020. Search in Google Scholar

Kim SJ, Xiao J, Wan J, Cohen P, Yen K. Mitochondrially derived peptides as novel regulators of metabolism. J Physiol. 2017;595(21):6613-21; DOI:10.1113/JP274472. Search in Google Scholar

Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. 2017;482(3):426-31; DOI:10.1016/j.bbrc.2016.11.088. Search in Google Scholar

Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000;529 Pt 1(Pt 1):57-68; DOI:10.1111/j.1469-7793.2000.00057.x. Search in Google Scholar

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1-13; DOI:10.1042/BJ20081386. Search in Google Scholar

Miller WL. Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol. 2013;379(1-2):62-73; DOI:10.1016/j.mce.2013.04.014. Search in Google Scholar

Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine manifestations and new developments in mitochondrial disease. Endocr Rev. 2022;43(3):583-609; DOI:10.1210/endrev/bnab036. Search in Google Scholar

Mohri I, Taniike M, Fujimura H, Matsuoka T, Inui K, Nagai T, Okada S. A case of Kearns-Sayre syndrome showing a constant proportion of deleted mitochondrial DNA in blood cells during 6 years of follow-up. J Neurol Sci. 1998;158(1):106-9; DOI:10.1016/s0022-510x(98)00082-3. Search in Google Scholar

Kokkinopoulou I, Moutsatsou P. Mitochondrial glucocorticoid receptors and their actions. Int J Mol Sci. 2021;22(11):6054; DOI:10.3390/ijms22116054. Search in Google Scholar

Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2-13; DOI:10.1016/j.mce.2010.04.005. Search in Google Scholar

Pufall MA. Glucocorticoids and cancer. Adv Exp Med Biol. 2015;872:315-33; DOI:10.1007/978-1-4939-2895-8_14. Search in Google Scholar

Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, Falke C, Khairova R, Zhou R, Yuan P, Machado-Vieira R, McEwen BS, Manji HK. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci USA. 2009;106(9):3543-8; DOI:10.1073/pnas.0812671106. Search in Google Scholar

Koufali MM, Moutsatsou P, Sekeris CE, Breen KC. The dynamic localization of the glucocorticoid receptor in rat C6 glioma cell mitochondria. Mol Cell Endocrinol. 2003;209(1-2):51-60; DOI:10.1016/j.mce.2003.07.003. Search in Google Scholar

Rimsza ME. Complications of corticosteroid therapy. Am J Dis Child. 1978;132(8):806-10; DOI:10.1001/archpedi.1978.02120330078018. Search in Google Scholar

Kuo T, McQueen A, Chen TC, Wang JC. Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 2015;872:99-126; DOI:10.1007/978-1-4939-2895-8_5. Search in Google Scholar

Goodwin JE, Geller DS. Glucocorticoid-induced hypertension. Pediatr Nephrol. 2012;27(7):1059-66; DOI:10.1007/s00467-011-1928-4. Search in Google Scholar

Mangos GJ, Whitworth JA, Williamson PM, Kelly JJ. Glucocorticoids and the kidney. Nephrology (Carlton). 2003;8(6):267-73; DOI:10.1111/j.1440-1797.2003.00215.x. Search in Google Scholar

Sapolsky RM. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress. 1996;1(1):1-19; DOI:10.3109/10253899609001092. Search in Google Scholar

Choi GE, Han HJ. Glucocorticoid impairs mitochondrial quality control in neurons. Neurobiol Dis. 2021;152:105301; DOI:10.1016/j.nbd.2021.105301. Search in Google Scholar

Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP. Mitochondria as key components of the stress response. Trends Endocrinol Metab. 2007;18(5):190-8; DOI:10.1016/j.tem.2007.04.004. Search in Google Scholar

Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol. 2014;10(5):303-10; DOI:10.1038/nrendo.2014.22. Search in Google Scholar

Casagrande S, Stier A, Monaghan P, Loveland JL, Boner W, Lupi S, Trevisi R, Hau M. Increased glucocorticoid concentrations in early life cause mitochondrial inefficiency and short telomeres. J Exp Biol. 2020;223(Pt 15):jeb222513; DOI:10.1242/jeb.222513. Search in Google Scholar

Kim KH, Son JM, Benayoun BA, Lee C. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 2018;28(3):516-524. e7; DOI:10.1016/j.cmet.2018.06.008. Search in Google Scholar

Nashine S, Kenney MC. Effects of mitochondrial-derived peptides (MDPs) on mitochondrial and cellular health in AMD. Cells. 2020;9(5):1102; DOI:10.3390/cells9051102. Search in Google Scholar

Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA. 2001;98(11):6336-41; DOI:10.1073/pnas.101133498. Search in Google Scholar

Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun. 2001;283(2):460-8; DOI:10.1006/bbrc.2001.4765. Search in Google Scholar

Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab. 2013;24(5):222-8; DOI:10.1016/j.tem.2013.01.005. Search in Google Scholar

Kim SJ, Guerrero N, Wassef G, Xiao J, Mehta HH, Cohen P, Yen K. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus. Oncotarget. 2016;7(30):46899-912; DOI:10.18632/oncotarget.10380. Search in Google Scholar

Cobb LJ, Lee C, Xiao J, Yen K, Wong RG, Nakamura HK, Mehta HH, Gao Q, Ashur C, Huffman DM, Wan J, Muzumdar R, Barzilai N, Cohen P. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY). 2016;8(4):796-809; DOI:10.18632/aging.100943. Search in Google Scholar

National Center for Biotechnology Information. Homo sapiens MOTS-c gene, complete cds [Internet]. Bethesda: National Library of Medicine; 2015[cited: 2023 Nov 13]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/KP7152302015/. Search in Google Scholar

Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de Cabo R, Cohen P. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21(3):443-54; DOI:10.1016/j.cmet.2015.02.009. Search in Google Scholar

Aibara S, Singh V, Modelska A, Amunts A. Structural basis of mitochondrial translation. Elife. 2020;9:e58362; DOI:10.7554/eLife.58362. Search in Google Scholar

Mohtashami Z, Singh MK, Salimiaghdam N, Ozgul M, Kenney MC. MOTS-c, the most recent mitochondrial derived peptide in human aging and age-related diseases. Int J Mol Sci. 2022;23(19):11991; DOI:10.3390/ijms231911991. Search in Google Scholar

Wang M, Wang G, Pang X, Ma J, Yuan J, Pan Y, Fu Y, Laher I, Li S. MOTS-c repairs myocardial damage by inhibiting the CCN1/ERK1/2/EGR1 pathway in diabetic rats. Front Nutr. 2023;9:1060684; DOI:10.3389/fnut.2022.1060684. Search in Google Scholar

Shen C, Wang J, Feng M, Peng J, Du X, Chu H, Chen X. The mitochondrial--derived peptide MOTS-c attenuates oxidative stress injury and the inflammatory response of H9c2 cells through the Nrf2/ARE and NF-κB pathways. Cardiovasc Eng Technol. 2022;13(5):651-61; DOI:10.1007/s13239-021-00589-w. Search in Google Scholar

Hu BT, Chen WZ. MOTS-c improves osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells via TGF--β/Smad pathway. Eur Rev Med Pharmacol Sci. 2018;22(21):7156-63; DOI:10.26355/eurrev_201811_16247. Search in Google Scholar

Kumagai H, Coelho AR, Wan J, Mehta HH, Yen K, Huang A, Zempo H, Fuku N, Maeda S, Oliveira PJ, Cohen P, Kim SJ. MOTS-c reduces myostatin and muscle atrophy signaling. Am J Physiol Endocrinol Metab. 2021;320(4):E680-90; DOI:10.1152/ajpendo.00275.2020. Search in Google Scholar

Jouvet N, Estall JL. The pancreas: bandmaster of glucose homeostasis. Exp Cell Res. 2017;360(1):19-23; DOI:10.1016/j.yexcr.2017.03.050. Search in Google Scholar

Ramanjaneya M, Bettahi I, Jerobin J, Chandra P, Abi Khalil C, Skarulis M, Atkin SL, Abou-Samra AB. Mitochondrial-derived peptides are down regulated in diabetes subjects. Front Endocrinol (Lausanne). 2019;10:331; DOI:10.3389/fendo.2019.00331. Search in Google Scholar

Yin Y, Pan Y, He J, Zhong H, Wu Y, Ji C, Liu L, Cui X. The mitochondrial--derived peptide MOTS-c relieves hyperglycemia and insulin resistance in gestational diabetes mellitus. Pharmacol Res. 2022;175:105987; DOI:10.1016/j.phrs.2021.105987. Search in Google Scholar

Zhang Y, Hu M, Jia W, Liu G, Zhang J, Wang B, Li J, Cui P, Li X, Lager S, Sferruzzi-Perri AN, Han Y, Liu S, Wu X, Brännström M, Shao LR, Billig H. Induction of hyperandrogenism and insulin resistance differentially modulates ferroptosis in uterine and placental tissues of pregnant rats. bioRxiv. 2020:2020.03.30.015529; DOI:10.1101/2020.03.30.015529. Search in Google Scholar

Zhang Y, Hu M, Jia W, Liu G, Zhang J, Wang B, Li J, Cui P, Li X, Lager S, Sferruzzi-Perri AN, Han Y, Liu S, Wu X, Brännström M, Shao LR, Billig H. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats. J Endocrinol. 2020;246(3):247-63; DOI:10.1530/JOE-20-0155. Search in Google Scholar

Ramanjaneya M, Jerobin J, Bettahi I, Bensila M, Aye M, Siveen KS, Sathyapalan T, Skarulis M, Abou-Samra AB, Atkin SL. Lipids and insulin regulate mitochondrial-derived peptide (MOTS-c) in PCOS and healthy subjects. Clin Endocrinol (Oxf). 2019;91(2):278-87; DOI:10.1111/cen.14007. Search in Google Scholar

Kong BS, Min SH, Lee C, Cho YM. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Cell Rep. 2021;36(4):109447; DOI:10.1016/j.celrep.2021.109447. Search in Google Scholar

Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann NY Acad Sci. 2015;1346(1):33-44; DOI:10.1111/nyas.12756. Search in Google Scholar

Chornoguz O, Hagan RS, Haile A, Arwood ML, Gamper CJ, Banerjee A, Powell JD. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation. J Immunol. 2017;198(10):3939-48; DOI:10.4049/jimmunol.1601078. Search in Google Scholar

Hasenour CM, Berglund ED, Wasserman DH. Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Mol Cell Endocrinol. 2013;366(2):152-62; DOI:10.1016/j.mce.2012.06.018. Search in Google Scholar

Gavrila A, Hollenberg AN. The hypothalamic-pituitary-thyroid axis: physiological regulation and clinical implications. In: Luster M, Duntas LH, Wartofsky L, editors. The thyroid and its diseases: a comprehensive guide for the clinician [Internet]. Cham: Springer; 2019 [cited 2023 Nov 19]. p. 13-23. Available from: https://doi.org/10.1007/978-3-319-72102-6_2/. Search in Google Scholar

Shahid MA, Ashraf MA, Sharma S. Physiology, thyroid hormone [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Nov 19]. 20 p. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500006/. Search in Google Scholar

Gyawali P, Takanche JS, Shrestha RK, Bhattarai P, Khanal K, Risal P, Koju R. Pattern of thyroid dysfunction in patients with metabolic syndrome and its relationship with components of metabolic syndrome. Diabetes Metab J. 2015;39(1):66-73; DOI:10.4093/dmj.2015.39.1.66. Search in Google Scholar

Khatiwada S, Sah SK, Kc R, Baral N, Lamsal M. Thyroid dysfunction in metabolic syndrome patients and its relationship with components of metabolic syndrome. Clin Diabetes Endocrinol. 2016;2:3; DOI:10.1186/s40842-016-0021-0. Search in Google Scholar

Wojciechowska M, Pruszyń ska-Oszmałek E, Kołodziejski PA, Krauss H, Leciejewska N, Szczepankiewicz D, Bień J, Skrzypski M, Wilczak M, Sassek M. Changes in MOTS-c level in the blood of pregnant women with metabolic disorders. Biology (Basel). 2021;10(10):1032; DOI:10.3390/biology10101032. Search in Google Scholar

Bahar MR, Tekin S, Beytur A, Onalan EE, Ozyalin F, Colak C, Sandal S. Effects of intracerebroventricular MOTS-c infusion on thyroid hormones and uncoupling proteins. Biol Futur. 2023;74(1-2):159-70; DOI:10.1007/s42977-023-00163-6. Search in Google Scholar

Echtay KS. Mitochondrial uncoupling proteins-what is their physiological role? Free Radic Biol Med. 2007;43(10):1351-71; DOI:10.1016/j.freeradbiomed.2007.08.011. Search in Google Scholar

Verthelyi D. Sex hormones as immunomodulators in health and disease. Int Immunopharmacol. 2001;1(6):983-93; DOI:10.1016/s1567-5769(01)00044-3. Search in Google Scholar

Lu H, Wei M, Zhai Y, Li Q, Ye Z, Wang L, Luo W, Chen J, Lu Z. MOTS-c peptide regulates adipose homeostasis to prevent ovariectomy-induced metabolic dysfunction. J Mol Med (Berl). 2019;97(4):473-85; DOI:10.1007/s00109-018-01738-w. Search in Google Scholar

Ming W, Lu G, Xin S, Huanyu L, Yinghao J, Xiaoying L, Chengming X, Ban-jun R, Li W, Zifan L. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation. Biochem Biophys Res Commun. 2016;476(4):412-9; DOI:10.1016/j.bbrc.2016.05.135. Search in Google Scholar

Lue Y, Swerdloff R, Jia Y, Wang C. The emerging role of mitochondrial derived peptide humanin in the testis. Biochim Biophys Acta Gen Subj. 2021;1865(12):130009; DOI:10.1016/j.bbagen.2021.130009. Search in Google Scholar

Ribas V, Nguyen MT, Henstridge DC, Nguyen AK, Beaven SW, Watt MJ, Hevener AL. Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERalpha-deficient mice. Am J Physiol Endocrinol Metab. 2010;298(2):E304-19; DOI:10.1152/ajpendo.00504.2009. Search in Google Scholar

Tawfik SH, Mahmoud BF, Saad MI, Shehata M, Kamel MA, Helmy MH. Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism. Biochem Res Int. 2015;2015:567945; DOI:10.1155/2015/567945. Search in Google Scholar

Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80-4; DOI:10.1016/j.cca.2012.12.007. Search in Google Scholar

Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576-81; DOI:10.1016/j.tem.2012.03.008. Search in Google Scholar

Inoue S, Fujikawa K, Matsuki-Fukushima M, Nakamura M. Effect of ovariectomy induced osteoporosis on metaphysis and diaphysis repair process. Injury. 2021;52(6):1300-9; DOI:10.1016/j.injury.2021.02.020. Search in Google Scholar

Xu Y, Chu N, Qiu X, Gober HJ, Li D, Wang L. The interconnected role of chemokines and estrogen in bone metabolism. Biosci Trends. 2017 Jan 16;10(6):433-444; DOI:10.5582/bst.2016.01072. Search in Google Scholar

Shah M, Kola B, Bataveljic A, Arnett TR, Viollet B, Saxon L, Korbonits M, Chenu C. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone. 2010;47(2):309-19; DOI:10.1016/j.bone.2010.04.596. Search in Google Scholar

Colón E, Strand ML, Carlsson-Skwirut C, Wahlgren A, Svechnikov KV, Cohen P, So der O. Anti-apoptotic factor humanin is expressed in the testis and prevents cell-death in leydig cells during the first wave of spermato-genesis. J Cell Physiol. 2006;208(2):373-85; DOI:10.1002/jcp.20672. Search in Google Scholar

Moretti E, Giannerini V, Rossini L, Matsuoka M, Trabalzini L, Collodel G. Immunolocalization of humanin in human sperm and testis. Fertil Steril. 2010;94(7):2888-90; DOI:10.1016/j.fertnstert.2010.04.075. Search in Google Scholar

Jia Y, Lue YH, Swerdloff R, Lee KW, Cobb LJ, Cohen P, Wang C. The cytoprotective peptide humanin is induced and neutralizes Bax after pro-apoptotic stress in the rat testis. Andrology. 2013;1(4):651-9; DOI:10.1111/j.2047-2927.2013.00091.x. Search in Google Scholar

Schally AV, Arimura A, Kastin AJ. Hypothalamic regulatory hormones. Science. 1973;179(4071):341-50; DOI:10.1126/science.179.4071.341. Search in Google Scholar

Ooi GT, Tawadros N, Escalona RM. Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol. 2004;228(1-2):1-21; DOI:10.1016/j.mce.2004.07.018. Search in Google Scholar

Kang GM, Min SH, Lee CH, Kim JY, Lim HS, Choi MJ, Jung SB, Park JW, Kim S, Park CB, Dugu H, Choi JH, Jang WH, Park SE, Cho YM, Kim JG, Kim KG, Choi CS, Kim YB, Lee C, Shong M, Kim MS. Mitohormesis in Hypothalamic POMC Neurons Mediates Regular Exercise-Induced High-Turnover Metabolism. Cell Metab. 2021 Feb 2;33(2):334-349.e6; DOI:10.1016/j.cmet.2021.01.003. Search in Google Scholar

Mu nzberg H, Huo L, Nillni EA, Hollenberg AN, Bjørbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology. 2003;144(5):2121-31; DOI:10.1210/en.2002-221037. Search in Google Scholar

Gottardo MF, Jaita G, Magri ML, Za rate S, Moreno Ayala M, Ferraris J, Eijo G, Pisera D, Candolfi M, Seilicovich A. Antiapoptotic factor humanin is expressed in normal and tumoral pituitary cells and protects them from TNF-α-induced apoptosis. PLoS One. 2014;9(10):e111548; DOI:10.1371/journal.pone.0111548. Search in Google Scholar

Gottardo MF, Pidre ML, Zuccato C, Asad AS, Imsen M, Jaita G, Candolfi M, Romanowski V, Seilicovich A. Baculovirus-based gene silencing of Humanin for the treatment of pituitary tumors. Apoptosis. 2018;23(2):143-51; DOI:10.1007/s10495-018-1444-0. Search in Google Scholar

Ozturk DA, Erden Y, Tekin S. Central MOTS-c infusion affects reproductive hormones in obese and non-obese rats [Internet]. Research Square [Preprint]. 2023 [cited 2023 Nov 18]: 15 p. Available from: https://doi.org/10.21203/rs.3.rs-3281413/v1/. Search in Google Scholar

Xiao J, Zhang Q, Shan Y, Ye F, Zhang X, Cheng J, Wang X, Zhao Y, Dan G, Chen M, Sai Y. The Mitochondrial-derived peptide (MOTS-c) interacted with Nrf2 to defend the antioxidant system to protect dopaminergic neurons against rotenone exposure. Mol Neurobiol. 2023;60(10):5915-30; DOI:10.1007/s12035-023-03443-3. Search in Google Scholar

Dzamko NL, Steinberg GR. AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta Physiol (Oxf). 2009;196(1):115-27; DOI:10.1111/j.1748-1716.2009.01969.x. Search in Google Scholar

Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M. Expanding role of AMPK in endocrinology. Trends Endocrinol Metab. 2006;17(5):205-15; DOI:10.1016/j.tem.2006.05.006. Search in Google Scholar

Lim CT, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling. J Mol Endocrinol. 2010;44(2):87-97; DOI:10.1677/JME-09-0063. Search in Google Scholar

Li W, Saud SM, Young MR, Chen G, Hua B. Targeting AMPK for can-cer prevention and treatment. Oncotarget. 2015;6(10):7365-78; DOI:10.18632/oncotarget.3629. Search in Google Scholar

Zadra G, Batista JL, Loda M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res. 2015;13(7):1059-72; DOI:10.1158/1541-7786.MCR-15-0068. Search in Google Scholar

Vara-Ciruelos D, Russell FM, Hardie DG. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? Open Biol. 2019;9(7):190099; DOI:10.1098/rsob.190099. Search in Google Scholar

Townsend LK, Steinberg GR. AMPK and the endocrine control of metabolism. Endocr Rev. 2023;44(5):910-33; DOI:10.1210/endrev/bnad012. Search in Google Scholar

Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84; DOI:10.1016/j.cell.2006.01.016. Search in Google Scholar

Xu J, Ji J, Yan XH. Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr. 2012;52(5):373-81; DOI:10.1080/10408398.2010.500245. Search in Google Scholar

Sugiyama M, Takahashi H, Hosono K, Endo H, Kato S, Yoneda K, Yuichi N, Koji F, Masato Y, Koichiro W, Hitoshi N, Atsushi N. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol. 2009;34:339-44; DOI:10.3892/ijo_00000156. Search in Google Scholar

Ihlemann J, Ploug T, Hellsten Y, Galbo H. Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol. 1999;277(2):E208-14; DOI:10.1152/ajpendo.1999.277.2.E208. Search in Google Scholar

Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ. Metabolic stress and altered glucose transport: activation of AMP--activated protein kinase as a unifying coupling mechanism. Diabetes 2000;49(4):527-31; DOI:10.2337/diabetes.49.4.527. Search in Google Scholar

Bergeron R, Previs SF, Cline GW, Perret P, Russell III RR, Young LH, Gerald IS. Effect of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside in-fusion on in vivo glucose and lipid metabolism in lean and obese zucker rats. Diabetes 2001;50(5):1076-82; DOI:10.2337/diabetes.50.5.1076. Search in Google Scholar

Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA. 2002;99(25):15983-7; DOI:10.1073/pnas.252625599. Search in Google Scholar

Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms con-trolling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115-24; DOI:10.1016/S0092-8674(00)80611-X. Search in Google Scholar

Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002;296(5566):349-52; DOI:10.1126/science.1071163. Search in Google Scholar

Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol. 2014;92(4):340-5; DOI:10.1038/icb.2014.11. Search in Google Scholar

Jiang J, Xu L, Yang L, Liu S, Wang Z. Mitochondrial-derived peptide MOTS-c ameliorates spared nerve injury-induced neuropathic pain in mice by inhibiting microglia activation and neuronal oxidative damage in the spinal cord via the AMPK pathway. ACS Chem Neurosci. 2023;14(12):2362-74; DOI:10.1021/acschemneuro.3c00140. Search in Google Scholar

Yan Z, Zhu S, Wang H, Wang L, Du T, Ye Z, Zhai D, Zhu Z, Tian X, Lu Z, Cao X. MOTS-c inhibits osteolysis in the mouse calvaria by affecting osteocyte-osteoclast crosstalk and inhibiting inflammation. Pharmacol Res. 2019;147:104381; DOI:10.1016/j.phrs.2019.104381. Search in Google Scholar

Yang B, Yu Q, Chang B, Guo Q, Xu S, Yi X, Cao S. MOTS-c interacts sy-nergistically with exercise intervention to regulate PGC-1α expression, attenuate insulin resistance and enhance glucose metabolism in mice via AMPK signaling pathway. Biochim Biophys Acta Mol Basis Dis. 2021;1867(6):166126; DOI:10.1016/j.bbadis.2021.166126. Search in Google Scholar

Garcia-Roves PM, Osler ME, Holmstro m MH, Zierath JR. Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem. 2008;283(51):35724-34; DOI:10.1074/jbc.M805078200. Search in Google Scholar

Marin TL, Gongol B, Zhang F, Martin M, Johnson DA, Xiao H, Wang Y, Subramaniam S, Chien S, Shyy JY. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal. 2017;10(464):eaaf7478; DOI:10.1126/scisignal.aaf7478. Search in Google Scholar

Valentine RJ, Coughlan KA, Ruderman NB, Saha AK. Insulin inhibits AMPK activity and phosphorylates AMPK Ser⁴⁸⁵/⁴⁹¹ through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys. 2014;562:62-9; DOI:10.1016/j.abb.2014.08.013. Search in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry