Otwarty dostęp

Potential Role of LYN, CCL2, ITGB3 and IL6 Genes in the Immune Response of Porcine Buccal Mucosa Cells


Zacytuj

1. Groeger S, Meyle J. Oral mucosal epithelial cells. Front Immunol. 2019;10; DOI:10.3389/fimmu.2019.00208.638368030837987 Open DOISearch in Google Scholar

2. Gartner LP. Oral anatomy and tissue types. Semin Dermatol. 1994;13:68–73. Search in Google Scholar

3. Eroschenko VP, di Fiore MS. DiFiore’s atlas of histology with functional correlations. 11 th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. 52 p. Search in Google Scholar

4. Longridge N, Clarke P, Aftab R, Ali T, Boursicot K, Sales D. Oxford assess and progress: clinical dentistry. Oxford: Oxford University Press; 2019. 314 p.10.1093/oso/9780198825173.001.0001 Search in Google Scholar

5. Lee Z, Keehn AY, Sterling ME, Metro MJ, Eun DD. A review of buccal mucosa graft ureteroplasty. Curr Urol Rep. 2018;19; DOI:10.1007/s11934-018-0772-5.29497854 Open DOISearch in Google Scholar

6. Arora S, Campbell L, Tourojman M, Pucheril D, Jones LR, Rogers C. Robotic buccal cucosal graft ureteroplasty for complex ureteral stricture. Urology. 2017;110:257–8; DOI:10.1016/j.urology.2017.06.037.29153902 Open DOISearch in Google Scholar

7. Creighton RL, Woodrow KA. Microneedle-mediated vaccine delivery to the oral mucosa. Adv Healthc Mater. 2019;8; DOI:10.1002/adhm.201801180.647655730537400 Open DOISearch in Google Scholar

8. Campisi G, Paderni C, Saccone R, Fede O, Wolff A, Giannola L. Human buccal mucosa as an innovative site of drug delivery. Curr Pharm Des. 2010;16:641–52; DOI:10.2174/138161210790883778.20388074 Open DOISearch in Google Scholar

9. Smart JD. Buccal drug delivery. Expert Opin Drug Deliv. 2005;2:507–17; DOI:10.1517/17425247.2.3.507.16296771 Open DOISearch in Google Scholar

10. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol. 2012;20:50; DOI:10.1016/J.TIM.2011.11.002.717312222153753 Open DOISearch in Google Scholar

11. Walters EM, Prather RS. Advancing swine models for human health and diseases. Mo Med. 2013;110:212. Search in Google Scholar

12. Niehues H, Jansen PAM, Rodijk-Olthuis D, Rikken G, Smits JPH, Schalkwijk J, Zeeuwen PLJM, van den Bogaard EHJ. Know your enemy: unexpected, pervasive and persistent viral and bacterial contamination of primary cell cultures. Exp Dermatol. 2020;29:672; DOI:10.1111/EXD.14126.749664832506526 Open DOISearch in Google Scholar

13. Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal. 2012;10:21; DOI:10.1186/1478-811X-10-21.346493522805580 Open DOISearch in Google Scholar

14. Pazdrak K, Schreiber D, Forsythe P, Justement L, Alam R. The intracellular signal transduction mechanism of interleukin 5 in eosinophils: the involvement of lyn tyrosine kinase and the ras-raf-1-MEK-microtubule-associated protein kinase pathway. J Exp Med. 1995;181:1827–34; DOI:10.1084/jem.181.5.1827. Open DOISearch in Google Scholar

15. Johansen S, Brenner AK, Bartaula-Brevik S, Reikvam H, Bruserud Ø. The possible importance of β3 integrins for leukemogenesis and chemoresistance in acute myeloid leukemia. Int J Mol Sci. 2018;19; DOI:10.3390/ijms19010251. Open DOISearch in Google Scholar

16. Wei LH, Kuo ML, Chen CA, Chou CH, Cheng WF, Chang MC, Su JL, Hsieh CY. The anti-apoptotic role of interleukin-6 in human cervical cancer is mediated by up-regulation of Mcl-1 through a PI 3-K/Akt pathway. Oncogene. 2001;20:5799–809; DOI:10.1038/sj.onc.1204733. Open DOISearch in Google Scholar

17. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2. Open DOISearch in Google Scholar

18. Jones RM, Neish AS. Recognition of bacterial pathogens and mucosal immunity. Cell Microbiol. 2011;13:670–6; DOI:10.1111/J.1462-5822.2011.01579.X. Open DOISearch in Google Scholar

19. Gaonkar PP, Patankar SR, Tripathi N, Sridharan G. Oral bacterial flora and oral cancer: The possible link? J Oral Maxillofac Pathol. 2018;22:234; DOI:10.4103/JOMFP.JOMFP_89_16. Open DOISearch in Google Scholar

20. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004;5:975–9; DOI:10.1038/ni1116. Open DOISearch in Google Scholar

21. Yamanashi Y, Mori S, Yoshida M, Kishimoto T, Inoue K, Yamamoto T, Toyoshima K. Selective expression of a protein-tyrosine kinase, p56(lyn), in hematopoietic cells and association with production of human T-cell lymphotrophic virus type I. Proc Natl Acad Sci USA. 1989;86:6538–42; DOI:10.1073/pnas.86.17.6538. Open DOISearch in Google Scholar

22. Umemori H, Wanaka A, Kato H, Takeuchi M, Tohyama M, Yamamoto T. Specific expressions of Fyn and Lyn, lymphocyte antigen receptor-associated tyrosine kinases, in the central nervous system. Mol Brain Res. 1992;16:303–10; DOI:10.1016/0169-328X(92)90239-8. Open DOISearch in Google Scholar

23. Krebs DL, Chehal MK, Sio A, Huntington ND, Da ML, Ziltener P, Inglese M, Kountouri N, Priatel JJ, Jones J, Tarlinton DM, Anderson GP, Hibbs ML, Harder KW. Lyn-dependent signaling regulates the innate immune response by controlling dendritic cell activation of NK cells. J Immunol. 2012;188:5094–105; DOI:10.4049/jimmunol.1103395.22491248 Open DOISearch in Google Scholar

24. Suzuki-Inoue K, Tulasne D, Shen Y, Bori-Sanz T, Inoue O, Jung SM, Moroi M, Andrews RK, Berndt MC, Watson SP. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J Biol Chem. 2002;277:21561–6; DOI:10.1074/jbc.M201012200.11943772 Open DOISearch in Google Scholar

25. Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll--like receptor signaling. J Leukoc Biol. 2016;100:927–41; DOI:10.1189/jlb.2mr0316-117rr.506909327343013 Open DOISearch in Google Scholar

26. Yamanashi Y, Fukushige S, Semba K, Sukegawa J, Miyajima N, Matsubara K, Yamamoto T, Toyoshima K. The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56lck. Mol Cell Biol. 1987;7:237–43; DOI:10.1128/mcb.7.1.237. Open DOISearch in Google Scholar

27. Bragado MJ, Gil MC, Martin-Hidalgo D, De Llera AH, Bravo N, Moreno AD, Garcia-Marin LJ. Src family tyrosine kinase regulates acrosome reaction but not motility in porcine spermatozoa. Reproduction. 2012;144:67–75; DOI:10.1530/REP-11-0075.22573827 Open DOISearch in Google Scholar

28. Bozulic LD, Dean WL, Delamere NA. The influence of Lyn kinase on Na,K-ATPase in porcine lens epithelium. Am J Physiol - Cell Physiol. 2004;286; DOI:10.1152/ajpcell.00174.2003.12967913 Open DOISearch in Google Scholar

29. Joshi N, Kumar D, Poluri KM. Elucidating the molecular interactions of chemokine ccl2 orthologs with flavonoid baicalin. ACS Omega. 2020;5:22637–51; DOI:10.1021/acsomega.0C03428.748241032923824 Open DOISearch in Google Scholar

30. Evers TMJ, Sheikhhassani V, Haks MC, Storm C, Ottenhoff THM, Mashaghi A. Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics. IScience. 2021;25; DOI:10.1016/J. ISCI.2021.103555. Open DOISearch in Google Scholar

31. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 1994;91:3652; DOI:10.1073/PNAS.91.9.3652. Open DOISearch in Google Scholar

32. Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C, Tan M, Jiang J, Qin X. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Rep. 2018;17:6935–41; DOI:10.3892/MMR.2018.8739/HTML. Open DOISearch in Google Scholar

33. Schneider D, Hong JY, Bowman ER, Chung Y, Nagarkar DR, Mchenry CL, Goldsmith AM, Bentley JK, Lewis TC, Hershenson MB. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease. Am J Physiol - Lung Cell Mol Physiol. 2013;304:L162; DOI:10.1152/AJPLUNG.00182.2012. Open DOISearch in Google Scholar

34. Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TNC, Salant DJ, Gutierrez-Ramos JC. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med. 1997;185:1371–80; DOI:10.1084/JEM.185.7.1371.21962519104823 Open DOISearch in Google Scholar

35. Wilkening A, Krappe J, Mühe AM, Lindenmeyer MT, Eltrich N, Luckow B, Vielhauer V. C-C chemokine receptor type 2 mediates glomerular injury and interstitial fibrosis in focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2020;35:227–39; DOI:10.1093/NDT/GFY380. Open DOISearch in Google Scholar

36. Yang J, Agarwal M, Ling S, Teitz-Tennenbaum S, Zemans RL, Osterholzer JJ, Sisson TH, Kim KK. Diverse injury pathways induce alveolar epithelial cell CCL2/12, which promotes lung fibrosis. Am J Respir Cell Mol Biol. 2020;62:622–32; DOI:10.1165/RCMB.2019-0297OC. Open DOISearch in Google Scholar

37. Martinotti S, Ranzato E. Scratch wound healing assay. Methods Mol Biol. 2020;2109:225–9; DOI:10.1007/7651_2019_259.31414347 Open DOISearch in Google Scholar

38. Sosnoski DM, Emanuel BS, Hawkins AL, Van Tuinen P, Ledbetter DH, Nussbaum RL, Kaos FT, Schwartz E, Phillips D, Bennett JS, Fitzgerald LA, Poncz M. Chromosomal localization of the genes for the vitronectin and fibronectin receptors α subunits and for platelet glycoproteins IIb and IIIa. J Clin Invest. 1988;81:1993–8; DOI:10.1172/JCI113548.4426532454952 Open DOISearch in Google Scholar

39. Trahtemberg U, Mevorach D. Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells. Front Immunol. 2017;8:1356; DOI:10.3389/fimmu.2017.01356.566105329118755 Open DOISearch in Google Scholar

40. Wu Y, Zuo J, Ji G, Saiyin H, Liu X, Yin F, Cao N, Wen Y, Li JJ, Yu L. Proapoptotic function of integrin β 3 in human hepatocellular carcinoma cells. Clin Cancer Res. 2009;15:60–9; DOI:10.1158/1078-0432.CCR-08-1028.365861619118033 Open DOISearch in Google Scholar

41. Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón y. Cajal S. ITGB3-mediated uptake of small extra-cellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun. 2020;11; DOI:10.1038/s41467-020-18081-9.745008232848136 Open DOISearch in Google Scholar

42. Mathew SA, Chandravanshi B, Bhonde R. Hypoxia primed placental mesenchymal stem cells for wound healing. Life Sci. 2017;182:85–92; DOI:10.1016/j.lfs.2017.06.016.28625360 Open DOISearch in Google Scholar

43. Mohsin S, Troupes CD, Starosta T, Sharp TE, Agra EJ, Smith S, Duran JM, Zalavadia N, Zhou Y, Kubo H, Berretta RM, Houser SR. Unique features of cortical bone stem cells associated with repair of the injured heart. Circ Res. 2015;117:1024–33; DOI:10.1161/CIRCRESAHA.115.307362.26472818 Open DOISearch in Google Scholar

44. Waksman R, Lipinski MJ, Acampado E, Cheng Q, Adams L, Torii S, Gai J, Torguson R, Hellinga DM, Westman PC, Joner M, Zumstein P, Kolodgie FD, Virmani R. Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus absorb in a porcine arteriovenous shunt model. Circ Cardiovasc Interv. 2017;10; DOI:10.1161/CIRCINTERVENTIONS.116.004762.28801538 Open DOISearch in Google Scholar

45. Koppara T, Cheng Q, Yahagi K, Mori H, Sanchez OD, Feygin J, Wittchow E, Kolodgie FD, Virmani R, Joner M. Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents. Circ Cardiovasc Interv. 2015;8; DOI:10.1161/CIRCINTERVENTIONS.115.002427.26022535 Open DOISearch in Google Scholar

46. Su L, Liu R, Cheng W, Zhu M, Li X, Zhao S, Yu M. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and placentation. PLoS One. 2014;9; DOI:10.1371/journal.pone.0087867.391485524505325 Open DOISearch in Google Scholar

47. Massuto DA, Kneese EC, Johnson GA, Burghardt RC, Hooper RN, Ing NH, Jaeger LA. Transforming growth factor beta (TGFB) signaling is activated during porcine implantation: proposed role for latency-associated peptide interactions with integrins at the conceptus-maternal interface. Reproduction. 2010;139:465–78; DOI:10.1530/REP-09-0447.19920116 Open DOISearch in Google Scholar

48. Jaeger A, Bardehle D, Oster M, Günther J, Muráni E, Ponsuksili S, Wimmers K, Kemper N. Gene expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli and Staphylococcus aureus in vitro. Vet Res. 2015;46; DOI:10.1186/s13567-015-0178-z.442198925948480 Open DOISearch in Google Scholar

49. Pal M, Febbraio MA, Whitham M. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol. 2014;92:331–9; DOI:10.1038/icb.2014.16.24751614 Open DOISearch in Google Scholar

50. Heinrich PC, Castell J V., Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621–36; DOI:10.1042/bj2650621.11336811689567 Open DOISearch in Google Scholar

51. Surbatovic M, Popovic N, Vojvodic D, Milosevic I, Acimovic G, Stojicic M, Veljovic M, Jevdjic J, Djordjevic D, Radakovic S. Cytokine profile in severe gram-positive and gram-negative abdominal sepsis. Sci Rep. 2015;5; DOI:10.1038/srep11355.446881826079127 Open DOISearch in Google Scholar

52. Dalrymple SA, Slattery R, Aud DM, Krishna M, Lucian LA, Murray R. Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection. Infect Immun. 1996;64:3231–5; DOI:10.1128/iai.64.8.3231-3235.1996.1742128757858 Open DOISearch in Google Scholar

53. Luo Y, Zheng SG. Hall of fame among pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol. 2016;7:604; DOI:10.3389/fimmu.2016.00604.516503628066415 Open DOISearch in Google Scholar

54. Hernandez-Hansen V, Bard JDJ, Tarleton CA, Wilder JA, Lowell CA, Wilson BS, Oliver JM. Increased expression of genes linked to FcεRI signaling and to cytokine and chemokine production in Lyn-deficient mast cells. J Immunol. 2005;175:7880–8; DOI:10.4049/jimmunol.175.12.7880.16339523 Open DOISearch in Google Scholar

55. Ji R, Tian S, Lu HJ, Lu Q, Zheng Y, Wang X, Ding J, Li Q, Lu Q. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J Immunol. 2013;191:6165–77; DOI:10.4049/jimmunol.1302229.387047624244024 Open DOISearch in Google Scholar

56. Iwase H, Liu H, Li T, Zhang Z, Gao B, Hara H, Wijkstrom M, Long C, Saari R, Ayares D, Cooper DKC, Ezzelarab MB. Therapeutic regulation of systemic inflammation in xenograft recipients. Xenotransplantation. 2017;24; DOI:10.1111/xen.12296.539733528294424 Open DOISearch in Google Scholar

57. Cui HX, Xu XR. Comparing the effect of intestinal bacteria from rabbit, pig, and chicken on inflammatory response in cultured rabbit crypt and villus. Can J Microbiol. 2019;65:59–67; DOI:10.1139/cjm-2017-0757.30230923 Open DOISearch in Google Scholar

58. Li Y, Hansen SL, Borst LB, Spears JW, Moeser AJ. Dietary iron deficiency and oversupplementation increase intestinal permeability, ion transport, and inflammation in pigs. J Nutr. 2016;146:1499–505; DOI:10.3945/jn.116.231621.495829127358414 Open DOISearch in Google Scholar

59. Yoo I, Han J, Kim M, Jang H, Sa S, Choi SH, Ka H. Expression and regulation of interleukin 6 and its receptor at the maternal-conceptus interface during pregnancy in pigs. Theriogenology. 2017;96:85–91; DOI:10.1016/j.theriogenology.2017.04.007.28532843 Open DOISearch in Google Scholar

60. Franczak A, Wojciechowicz B, Zmijewska A, Kolakowska J, Kotwica G. The effect of interleukin 1β and interleukin 6 on estradiol-17β secretion in the endometrium of pig during early pregnancy and the estrous cycle. Theriogenology. 2013;80:90–8; DOI:10.1016/j.theriogenology.2013.03.020.23615429 Open DOISearch in Google Scholar

61. He X, Ji F, Zhang Z, Tang Y, Yang L, Huang S, Li W, Su Q, Xiong W, Zhu Z, Wang L, Lv L, Yao J, Zhang L, Zhang L, Guo Z. Combined liver-kidney per-fusion enhances protective effects of normothermic perfusion on liver grafts from donation after cardiac death. Liver Transplant. 2018;24:67–79; DOI:10.1002/lt.24954.29024427 Open DOISearch in Google Scholar

62. Sommaggio R, Máñez R, Costa C. TNF, pig CD86, and VCAM-1 identified as potential targets for intervention in xenotransplantation of pig chondrocytes. Cell Transplant. 2009;18:1381–93; DOI:10.3727/096368909X474249.19796501 Open DOISearch in Google Scholar

63. Wang S, Yao B, Gao H, Zang J, Tao S, Zhang S, Huang S, He B, Wang J. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet Res. 2019;15; DOI:10.1186/s12917-019-1991-9.661794231291967 Open DOISearch in Google Scholar

64. Walsh AM, Sweeney T, O’Shea CJ, Doyle DN, O’Doherty J V. Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br J Nutr. 2013;110:1630–8; DOI:10.1017/S0007114513000834.23531383 Open DOISearch in Google Scholar

65. te Winkel JP, Drucker NA, Morocho BS, Shelley WC, Markel TA. Interleukin-6 therapy improves intestinal recovery following ischemia. J Surg Res. 2019;239:142–8; DOI:10.1016/j.jss.2019.02.001.777912530826565 Open DOISearch in Google Scholar

66. Blanpain C, Fuchs E. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344(6189):1242281; DOI:10.1126/science.1242281.452326924926024 Open DOISearch in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry