Zacytuj

Alix-Panabières C, Schwarzenbach H, Pantel K. Circulating tumor cells and circulating tumor DNA. Annu Rev Med. 2012;63:199–215; DOI:10.1146/annurev-med-062310-094219. Alix-Panabières C Schwarzenbach H Pantel K Circulating tumor cells and circulating tumor DNA Annu Rev Med 2012 63199 215 10.1146/annurev-med-062310-094219Open DOISearch in Google Scholar

Paoletti C, Hayes DF. Circulating Tumor Cells. Adv Exp Med Biol. 2016;882:235–58; DOI:10.1007/978-3-319-22909-6_10. Paoletti C Hayes DF Circulating Tumor Cells Adv Exp Med Biol 2016 882235 58 10.1007/978-3-319-22909-6_10Open DOISearch in Google Scholar

Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204; DOI:10.1016/j.canlet.2006.12.014. Paterlini-Brechot P Benali NL Circulating tumor cells (CTC) detection: clinical impact and future directions Cancer Lett 2007 253 2 180 204 10.1016/j.canlet.2006.12.014Open DOISearch in Google Scholar

Lianidou ES, Markou A, Strati A. The Role of CTCs as Tumor Biomarkers. Adv Exp Med Biol. 2015;867:341–67; DOI:10.1007/978-94-017-7215-0_21. Lianidou ES Markou A Strati A The Role of CTCs as Tumor Biomarkers Adv Exp Med Biol 2015 867341 67 10.1007/978-94-017-7215-0_21Open DOISearch in Google Scholar

Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, i in. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers. 2020;12(4); DOI:10.3390/cancers12040867. Dianat-Moghadam H Azizi M Eslami-S Z Cortés-Hernández LE Heidarifard M Nouri M i in The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance Cancers 2020 12 4 10.3390/cancers12040867Open DOISearch in Google Scholar

Maly V, Maly O, Kolostova K, Bobek V. Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer. In Vivo. 2019;33(4):1027–37; DOI:10.21873/invivo.11571. Maly V Maly O Kolostova K Bobek V Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer In Vivo 2019 33 4 1027 37 10.21873/invivo.11571Open DOISearch in Google Scholar

Dizdar L, Fluegen G, van Dalum G, Honisch E, Neves RP, Niederacher D, i in. Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: results from a prospective, single-center study. Mol Oncol. 2019;13(7):1548–58; DOI:10.1002/1878-0261.12507. Dizdar L Fluegen G van Dalum G Honisch E Neves RP Niederacher D i in Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: results from a prospective, single-center study Mol Oncol 2019 13 7 1548 58 10.1002/1878-0261.12507Open DOISearch in Google Scholar

Gorges TM, Penkalla N, Schalk T, Joosse SA, Riethdorf S, Tucholski J, i in. Enumeration and Molecular Characterization of Tumor Cells in Lung Cancer Patients Using a Novel In Vivo Device for Capturing Circulating Tumor Cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22(9):2197–206; DOI:10.1158/1078-0432.CCR-15-1416. Gorges TM Penkalla N Schalk T Joosse SA Riethdorf S Tucholski J i in Enumeration and Molecular Characterization of Tumor Cells in Lung Cancer Patients Using a Novel In Vivo Device for Capturing Circulating Tumor Cells Clin Cancer Res Off J Am Assoc Cancer Res 2016 22 9 2197 206 10.1158/1078-0432.CCR-15-1416Open DOISearch in Google Scholar

Pantel K, Hille C, Scher HI. Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility. Clin Chem. 2019;65(1):87–99; DOI:10.1373/clinchem.2018.287102. Pantel K Hille C Scher HI Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility Clin Chem 2019 65 1 87 99 10.1373/clinchem.2018.287102Open DOISearch in Google Scholar

Poulet G, Massias J, Taly V. Liquid Biopsy: General Concepts. Acta Cytol. 2019;63(6):449–55; DOI:10.1159/000499337. Poulet G Massias J Taly V Liquid Biopsy: General Concepts Acta Cytol 2019 63 6 449 55 10.1159/000499337Open DOISearch in Google Scholar

Habli Z, AlChamaa W, Saab R, Kadara H, Khraiche ML. Circulating Tumor Cell Detection Technologies and Clinical Utility: Challenges and Opportunities. Cancers. 2020;12(7); DOI:10.3390/cancers12071930. Habli Z AlChamaa W Saab R Kadara H Khraiche ML Circulating Tumor Cell Detection Technologies and Clinical Utility: Challenges and Opportunities Cancers 2020 12 7 10.3390/cancers12071930Open DOISearch in Google Scholar

Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D, Nowaczyk P, i in. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol. 2012;41(4):1241–50; DOI:10.3892/ijo.2012.1557. Saucedo-Zeni N Mewes S Niestroj R Gasiorowski L Murawa D Nowaczyk P i in A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire Int J Oncol 2012 41 4 1241 50 10.3892/ijo.2012.1557Open DOISearch in Google Scholar

Shahneh FZ. Sensitive antibody-based CTCs detection from peripheral blood. Hum Antibodies. 2013;22(1–2):51–4; DOI:10.3233/HAB-130270. Shahneh FZ Sensitive antibody-based CTCs detection from peripheral blood Hum Antibodies 2013 22 1–2 51 4 10.3233/HAB-130270Open DOISearch in Google Scholar

Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A, i in. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer. 2016;138(12):2894–904; DOI:10.1002/ijc.30007. Hvichia GE Parveen Z Wagner C Janning M Quidde J Stein A i in A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells Int J Cancer 2016 138 12 2894 904 10.1002/ijc.30007Open DOISearch in Google Scholar

Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev. 2020;39(3):969–87; DOI:10.1007/s10555-020-09898-3. Gires O Pan M Schinke H Canis M Baeuerle PA Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020 39 3 969 87 10.1007/s10555-020-09898-3Open DOISearch in Google Scholar

Cetin D, Okan M, Bat E, Kulah H. A comparative study on EpCAM antibody immobilization on gold surfaces and microfluidic channels for the detection of circulating tumor cells. Colloids Surf B Biointerfaces. 2020;188:110808; DOI:10.1016/j.colsurfb.2020.110808 Cetin D Okan M Bat E Kulah H A comparative study on EpCAM antibody immobilization on gold surfaces and microfluidic channels for the detection of circulating tumor cells Colloids Surf B Biointerfaces 2020 188110808 10.1016/j.colsurfb.2020.110808Open DOISearch in Google Scholar

Tao L, Zhang K, Sun Y, Jin B, Zhang Z, Yang K. Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells. Biosens Bioelectron. 2012;35(1):186–92; DOI:10.1016/j.bios.2012.02.044. Tao L Zhang K Sun Y Jin B Zhang Z Yang K Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells Biosens Bioelectron 2012 35 1 186 92 10.1016/j.bios.2012.02.044Open DOISearch in Google Scholar

Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev. 2014;114(21):11083–130; DOI:10.1021/cr5000943. Vashist SK Lam E Hrapovic S Male KB Luong JHT Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics Chem Rev 2014 114 21 11083 130 10.1021/cr5000943Open DOISearch in Google Scholar

Piascik JR, Wolter SD, Stoner BR. Development of a novel surface modification for improved bonding to zirconia. Dent Mater Off Publ Acad Dent Mater. 2011;27(5):e99-105; DOI:10.1016/j.dental.2011.01.005 Piascik JR Wolter SD Stoner BR Development of a novel surface modification for improved bonding to zirconia Dent Mater Off Publ Acad Dent Mater 2011 27 5 e99 105 10.1016/j.dental.2011.01.005Open DOISearch in Google Scholar

Vansant EF, Voort PVD, Vrancken KC. Characterization and Chemical Modification of the Silica Surface. Elsevier. 1995. 573 s. Vansant EF Voort PVD Vrancken KC Characterization and Chemical Modification of the Silica Surface Elsevier 1995 573 s10.1016/S0167-2991(06)81508-9Search in Google Scholar

MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science. 2000;289(5485):1760–3; DOI: 10.1126/science.289.5485.1760. MacBeath G Schreiber SL Printing proteins as microarrays for high-throughput function determination Science 2000 289 5485 1760 3 10.1126/science.289.5485.1760Open DOISearch in Google Scholar

Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods San Diego Calif. 2017;116:95–111; DOI:10.1016/j. ymeth.2016.11.010. Shen M Rusling J Dixit CK Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development Methods San Diego Calif 2017 11695 111 10.1016/j.ymeth.2016.11.010Open DOISearch in Google Scholar

Couston RG, Skoda MW, Uddin S, van der Walle CF. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces. mAbs. 2013;5(1):126–39; DOI:10.4161/mabs.22522. Couston RG Skoda MW Uddin S van der Walle CF Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces mAbs 2013 5 1 126 39 10.4161/mabs.22522Open DOISearch in Google Scholar

Sterzynska K, Budna J, Frydrych-Tomczak E, Hreczycho G, Malinska A, Maciejewski H, i in. Silane-modified surfaces in specific antibody-mediated cell recognition. Folia Histochem Cytobiol. 2014;52(3):250–5; DOI:10.5603/FHC.2014.0029. Sterzynska K Budna J Frydrych-Tomczak E Hreczycho G Malinska A Maciejewski H i in Silane-modified surfaces in specific antibody-mediated cell recognition Folia Histochem Cytobiol 2014 52 3 250 5 10.5603/FHC.2014.0029Open DOISearch in Google Scholar

Xu H, Zhao X, Grant C, Lu JR, Williams DE, Penfold J. Orientation of a monoclonal antibody adsorbed at the solid/solution interface: a combined study using atomic force microscopy and neutron reflectivity. Langmuir ACS J Surf Colloids. 2006;22(14):6313–20; DOI:10.1021/la0532454. Xu H Zhao X Grant C Lu JR Williams DE Penfold J Orientation of a monoclonal antibody adsorbed at the solid/solution interface: a combined study using atomic force microscopy and neutron reflectivity Langmuir ACS J Surf Colloids 2006 22 14 6313 20 10.1021/la0532454Open DOISearch in Google Scholar

Xu H, Zhao X, Lu JR, Williams DE. Relationship between the structural conformation of monoclonal antibody layers and antigen binding capacity. Biomacromolecules. 2007;8(8):2422–8; DOI:10.1021/bm070297u. Xu H Zhao X Lu JR Williams DE Relationship between the structural conformation of monoclonal antibody layers and antigen binding capacity Biomacromolecules 2007 8 8 2422 8 10.1021/bm070297uOpen DOISearch in Google Scholar

Zhao X, Pan F, Garcia-Gancedo L, Flewitt AJ, Ashley GM, Luo J, i in. Interfacial recognition of human prostate-specific antigen by immobilized monoclonal antibody: effects of solution conditions and surface chemistry. J R Soc Interface. 2012;9(75):2457–67; DOI:10.1098/ rsif.2012.0148. Zhao X Pan F Garcia-Gancedo L Flewitt AJ Ashley GM Luo J i in Interfacial recognition of human prostate-specific antigen by immobilized monoclonal antibody: effects of solution conditions and surface chemistry J R Soc Interface 2012 9 75 2457 67 10.1098/rsif.2012.0148Open DOISearch in Google Scholar

Emaminejad S, Javanmard M, Gupta C, Chang S, Davis RW, Howe RT. Tunable control of antibody immobilization using electric field. Proc Natl Acad Sci US A. 2015;112(7):1995–9; DOI:10.1073/pnas.1424592112. Emaminejad S Javanmard M Gupta C Chang S Davis RW Howe RT Tunable control of antibody immobilization using electric field Proc Natl Acad Sci US A 2015 112 7 1995 9 10.1073/pnas.1424592112Open DOISearch in Google Scholar

Della Ventura B, Schiavo L, Altucci C, Esposito R, Velotta R. Light assisted antibody immobilization for bio-sensing. Biomed Opt Express. 2011;2(11):3223–31; DOI:10.1364/BOE.2.003223. Della Ventura B Schiavo L Altucci C Esposito R Velotta R Light assisted antibody immobilization for bio-sensing Biomed Opt Express 2011 2 11 3223 31 10.1364/BOE.2.003223Open DOISearch in Google Scholar

Zhou J, Tsao H-K, Sheng Y-J, Jiang S. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces. J Chem Phys. 2004;121(2):1050–7; DOI:10.1063/1.1757434. Zhou J Tsao H-K Sheng Y-J Jiang S Monte Carlo simulations of antibody adsorption and orientation on charged surfaces J Chem Phys 2004 121 2 1050 7 10.1063/1.1757434Open DOISearch in Google Scholar

Harmsen MM, Fijten HPD. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides. J Immunoassay Immunochem. 2012;33(3):234–51; DOI:10.1 080/15321819.2011.634473. Harmsen MM Fijten HPD Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides J Immunoassay Immunochem 2012 33 3 234 51 10.1080/15321819.2011.634473Open DOISearch in Google Scholar

Holstein CA, Chevalier A, Bennett S, Anderson CE, Keniston K, Olsen C, i in. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers. Anal Bioanal Chem. 2016;408(5):1335–46; DOI:10.1007/s00216-015-9052-0. Holstein CA Chevalier A Bennett S Anderson CE Keniston K Olsen C i in Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers Anal Bioanal Chem 2016 408 5 1335 46 10.1007/s00216-015-9052-0Open DOISearch in Google Scholar

Cohn C, Leung SL, Zha Z, Crosby J, Teng W, Wu X. Comparative study of antibody immobilization mediated by lipid and polymer fibers. Colloids Surf B Biointerfaces. 2015;134:1–7; DOI:10.1016/j. colsurfb.2015.06.021. Cohn C Leung SL Zha Z Crosby J Teng W Wu X Comparative study of antibody immobilization mediated by lipid and polymer fibers Colloids Surf B Biointerfaces 2015 1341 7 10.1016/j.colsurfb.2015.06.021Open DOISearch in Google Scholar

Baldrich E, Laczka O, del Campo FJ, Muñoz FX. Self-assembled monolayers as a base for immunofunctionalisation: unequal performance for protein and bacteria detection. Anal Bioanal Chem. 2008;390(6):1557– 62; DOI:10.1007/s00216-008-1887-1. Baldrich E Laczka O del Campo FJ Muñoz FX Self-assembled monolayers as a base for immunofunctionalisation: unequal performance for protein and bacteria detection Anal Bioanal Chem 2008 390 6 1557– 62 10.1007/s00216-008-1887-1Open DOISearch in Google Scholar

Foerster A, Hołowacz I, Sunil Kumar GB, Anandakumar S, Wall JG, Wawrzyńska M, i in. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications. J Biomed Mater Res A. 2016;104(4):821–32; DOI:10.1002/jbm.a.35616. Foerster A Hołowacz I Sunil Kumar GB Anandakumar S Wall JG Wawrzyńska M i in Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications J Biomed Mater Res A 2016 104 4 821 32 10.1002/jbm.a.35616Open DOISearch in Google Scholar

Theil G, Fischer K, Weber E, Medek R, Hoda R, Lücke K, i in. The Use of a New CellCollector to Isolate Circulating Tumor Cells from the Blood of Patients with Different Stages of Prostate Cancer and Clinical Outcomes - A Proof-of-Concept Study. PloS One. 2016;11(8):e0158354; DOI:10.1371/journal.pone.0158354. Theil G Fischer K Weber E Medek R Hoda R Lücke K i in The Use of a New CellCollector to Isolate Circulating Tumor Cells from the Blood of Patients with Different Stages of Prostate Cancer and Clinical Outcomes - A Proof-of-Concept Study PloS One 2016 11 8 e0158354 10.1371/journal.pone.0158354Open DOISearch in Google Scholar

Sharma S, Byrne H, O’Kennedy RJ. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 2016;60(1):9–18; DOI:10.1042/EBC20150002. Sharma S Byrne H O’Kennedy RJ Antibodies and antibody-derived analytical biosensors Essays Biochem 2016 60 1 9 18 10.1042/EBC20150002Open DOISearch in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry