Zacytuj

Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102; DOI:10.1126/science.1164680.BergmannOBhardwajRDBernardSZdunekSBarnabé-HeiderFWalshSZupicichJAlkassKBuchholzBADruidHJovingeSFrisénJEvidence for cardiomyocyte renewal in humansScience20093249810210.1126/science.1164680Open DOISearch in Google Scholar

Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4; DOI:10.1038/nm1618.HsiehPCHSegersVFMDavisMEMacGillivrayCGannonJMolkentinJDRobbinsJLeeRTEvidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injuryNat Med200713970410.1038/nm1618Open DOISearch in Google Scholar

Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu T-D, Guerquin-Kern J-L, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–6; DOI:10.1038/nature11682.SenyoSESteinhauserMLPizzimentiCLYangVKCaiLWangMWuT-DGuerquin-KernJ-LLecheneCPLeeRTMammalian heart renewal by pre-existing cardiomyocytesNature2013493433610.1038/nature11682Open DOISearch in Google Scholar

Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B. Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases. Circulation. 2018;138:793–805; DOI:10.1161/CIRCULATIONAHA.118.034250.LiYHeLHuangXBhalooSIZhaoHZhangSPuWTianXLiYLiuQYuWZhangLLiuXLiuKTangJZhangHCaiDRalfAHXuQLuiKOZhouBGenetic Lineage Tracing of Nonmyocyte Population by Dual RecombinasesCirculation201813879380510.1161/CIRCULATIONAHA.118.034250Open DOISearch in Google Scholar

Lerman DA, Diaz M, Peault B. Changes in coexpression of pericytes and endogenous cardiac progenitor cells from heart development to disease state. Eur Heart J. 2018;39:1850; DOI:10.1093/eurheartj/ehy565.P1850.LermanDADiazMPeaultBChanges in coexpression of pericytes and endogenous cardiac progenitor cells from heart development to disease stateEur Heart J201839185010.1093/eurheartj/ehy565.P1850Open DOISearch in Google Scholar

Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286:481–6.WolffeAPMatzkeMAEpigenetics: regulation through repressionScience1999286481610.1126/science.286.5439.481Search in Google Scholar

Costa-Reis P, Sullivan KE. Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep. 2013;15:369; DOI:10.1007/s11926-013-0369-4.Costa-ReisPSullivanKEGenetics and epigenetics of systemic lupus erythematosusCurr Rheumatol Rep20131536910.1007/s11926-013-0369-4Open DOISearch in Google Scholar

Schneider E, Pliushch G, Hajj N El, Galetzka D, Puhl A, Schorsch M, Frauenknecht K, Riepert T, Tresch A, Müller AM, Coerdt W, Zechner U, Haaf T. Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res. 2010;38:3880–90; DOI:10.1093/nar/gkq126.SchneiderEPliushchGHajjN ElGaletzkaDPuhlASchorschMFrauenknechtKRiepertTTreschAMüllerAMCoerdtWZechnerUHaafTSpatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patternsNucleic Acids Res20103838809010.1093/nar/gkq126Open DOISearch in Google Scholar

Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20; DOI:10.1038/nrg3354.SmithZDMeissnerADNA methylation: roles in mammalian developmentNat Rev Genet2013142042010.1038/nrg3354Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Jeong M, Goodell MA. New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Exp Hematol. 2014;42:609–17; DOI:10.1016/j.exphem.2014.04.008.JeongMGoodellMANew answers to old questions from genome-wide maps of DNA methylation in hematopoietic cellsExp Hematol2014426091710.1016/j.exphem.2014.04.008Open DOISearch in Google Scholar

Zhang Y, Zhao M, Sawalha AH, Richardson B. Impaired DNA methylation and its mechanisms in CD4+T cells of systemic lupus erythematosus. J Autoimmun. 2013;41:92–9; DOI:10.1016/j.jaut.2013.01.005.ZhangYZhaoMSawalhaAHRichardsonBImpaired DNA methylation and its mechanisms in CD4+T cells of systemic lupus erythematosusJ Autoimmun20134192910.1016/j.jaut.2013.01.005Open DOISearch in Google Scholar

Suzuki MM, Bird A. DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76; DOI:10.1038/nrg2341.SuzukiMMBirdADNA methylation landscapes: Provocative insights from epigenomicsNat Rev Genet200894657610.1038/nrg2341Open DOISearch in Google Scholar

Jin B, Ernst J, Tiedemann RL, Xu H, Sureshchandra S, Kellis M, Dalton S, Liu C, Choi J-H, Robertson KD. Linking DNA Methyltransferases to Epigenetic Marks and Nucleosome Structure Genome-wide in Human Tumor Cells. Cell Rep. 2012;2:1411–24; DOI:10.1016/j.celrep.2012.10.017.JinBErnstJTiedemannRLXuHSureshchandraSKellisMDaltonSLiuCChoiJ-HRobertsonKDLinking DNA Methyltransferases to Epigenetic Marks and Nucleosome Structure Genome-wide in Human Tumor CellsCell Rep2012214112410.1016/j.celrep.2012.10.017Open DOISearch in Google Scholar

Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Würch A, Bönisch U, Günther S, Backofen R, Fleischmann BK, Schübeler D, Hein L. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5; DOI:10.1038/ncomms6288.GilsbachRPreisslSGrüningBASchnickTBurgerLBenesVWürchABönischUGüntherSBackofenRFleischmannBKSchübelerDHeinLDynamic DNA methylation orchestrates cardiomyocyte development, maturation and diseaseNat Commun2014510.1038/ncomms6288Open DOISearch in Google Scholar

Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett MR, Foo RSY. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011;124:2411–22; DOI:10.1161/CIRCULATIONAHA.111.040071.MovassaghMChoyMKKnowlesDACordedduLHaiderSDownTSiggensLVujicASimeoniIPenkettCGoddardMLioPBennettMRFooRSYDistinct epigenomic features in end-stage failing human heartsCirculation201112424112210.1161/CIRCULATIONAHA.111.040071Open DOISearch in Google Scholar

Tian L, Wu D, Dasgupta A, Chen KH, Mewburn J, Potus F, Lima PDA, Hong Z, Zhao YY, Hindmarch CCT, Kutty S, Provencher S, Bonnet S, Sutendra G, Archer SL. Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension. Circ Res. 2020;126:1723–45; DOI:10.1161/CIRCRESAHA.120.316443.TianLWuDDasguptaAChenKHMewburnJPotusFLimaPDAHongZZhaoYYHindmarchCCTKuttySProvencherSBonnetSSutendraGArcherSLEpigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial HypertensionCirc Res202012617234510.1161/CIRCRESAHA.120.316443Open DOISearch in Google Scholar

Nührenberg TG, Hammann N, Schnick T, Preißl S, Witten A, Stoll M, Gilsbach R, Neumann FJ, Hein L. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS One. 2015;10; DOI:10.1371/journal.pone.0131019.NührenbergTGHammannNSchnickTPreißlSWittenAStollMGilsbachRNeumannFJHeinLCardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in micePLoS One20151010.1371/journal.pone.0131019Open DOISearch in Google Scholar

Madsen A, Höppner G, Krause J, Hirt MN, Laufer SD, Schweizer M, Tan WLW, Mosqueira D, Anene-Nzelu CG, Lim I, Foo RSY, Eschenhagen T, Stenzig J. An important role for DNMT3a-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 2020:1562–78; DOI:10.1161/CIRCULATIONAHA.119.044444.MadsenAHöppnerGKrauseJHirtMNLauferSDSchweizerMTanWLWMosqueiraDAnene-NzeluCGLimIFooRSYEschenhagenTStenzigJAn important role for DNMT3a-mediated DNA methylation in cardiomyocyte metabolism and contractilityCirculation202015627810.1161/CIRCULATIONAHA.119.044444Open DOISearch in Google Scholar

Naito M, Mori M, Inagawa M, Miyata K, Hashimoto N, Tanaka S, Asahara H. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLOS Genet. 2016;12:e1006167; DOI:10.1371/journal.pgen.1006167.NaitoMMoriMInagawaMMiyataKHashimotoNTanakaSAsaharaHDnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2PLOS Genet201612e100616710.1371/journal.pgen.1006167Open DOISearch in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry