Zacytuj

Lai D, Xu M, Zhang Q, Chen Y, Li T, Wang Q, Gao Y, Wei C. Identification and characterization of epithelial cells derived from human ovarian follicular fluid. Stem Cell Res Ther. 2015;6(1):13; DOI:10.1186/s13287-015-0004-6.LaiDXuMZhangQChenYLiTWangQGaoYWeiCIdentification and characterization of epithelial cells derived from human ovarian follicular fluidStem Cell Res Ther2015611310.1186/s13287-015-0004-6439278825889077Open DOISearch in Google Scholar

Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9; DOI:10.1095/biolreprod.109.082941.RodgersRJIrving-RodgersHFFormation of the ovarian follicular antrum and follicular fluidBiol Reprod20108261021910.1095/biolreprod.109.08294120164441Open DOISearch in Google Scholar

Wen X, Li D, Tozer AJ, Docherty SM, Iles RK. Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles. Reprod Biol Endocrinol. 2010;8:117; DOI:10.1186/1477-7827-8-117.WenXLiDTozerAJDochertySMIlesRKEstradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory folliclesReprod Biol Endocrinol2010811710.1186/1477-7827-8-117295897920937107Open DOISearch in Google Scholar

Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod. 2018;33(4):666–679; DOI:10.1093/humrep/dey011.ErnstEHFranksSHardyKVillesenPLykke-HartmannKGranulosa cells from human primordial and primary follicles show differential global gene expression profilesHum Reprod201833466667910.1093/humrep/dey01129506120Open DOISearch in Google Scholar

Alam MH, Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod Med Biol. 2020;19(1):13–23; DOI:10.1002/rmb2.12292.AlamMHMiyanoTInteraction between growing oocytes and granulosa cells in vitroReprod Med Biol2020191132310.1002/rmb2.12292695559131956281Open DOISearch in Google Scholar

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27(1):210–9; DOI:10.1634/stemcells.2008-0233.Kossowska-TomaszczukKDe GeyterCDe GeyterMMartinIHolzgreveWScherberichAZhangHThe Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian FolliclesStem Cells2009271210910.1634/stemcells.2008-023319224509Open DOISearch in Google Scholar

Hoang SN, Ho CNQ, Nguyen TTP, Doan CC, Tran DH, Le LT. Evaluation of stemness marker expression in bovine ovarian granulosa cells. Anim Reprod. 2019;16(2):277–81; DOI:10.21451/1984-3143-AR2018-0083.HoangSNHoCNQNguyenTTPDoanCCTranDHLeLTEvaluation of stemness marker expression in bovine ovarian granulosa cellsAnim Reprod20191622778110.21451/1984-3143-AR2018-0083767359633224287Open DOISearch in Google Scholar

Kranc W, Brązert M, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Skowroński MT, Bruska M, Zabel M, Nowicki M, Kempisty B. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol Med Rep. 2019;19(3):1705–15; DOI:10.3892/mmr.2019.9837.KrancWBrązertMCelichowskiPBryjaANawrockiMJOżegowskaKJankowskiMJesetaMPawelczykLBręborowiczARachońDSkowrońskiMTBruskaMZabelMNowickiMKempistyB‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approachMol Med Rep201919317051510.3892/mmr.2019.9837639001030628715Open DOISearch in Google Scholar

Brevini TAL, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F. Morphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and Addressed Toward Muscular Differentiation. Stem Cell Rev Reports. 2014;10(5):633–42; DOI:10.1007/s12015-014-9521-4.BreviniTALPennarossaGRahmanMMPaffoniAAntoniniSRagniGdeEguileorMTettamantiGGandolfiFMorphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and Addressed Toward Muscular DifferentiationStem Cell Rev Reports20141056334210.1007/s12015-014-9521-424858410Open DOISearch in Google Scholar

Murry CE, Keller G. Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development. Cell. 2008;132(4):661–80; DOI:10.1016/j.cell.2008.02.008.MurryCEKellerGDifferentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic DevelopmentCell200813246618010.1016/j.cell.2008.02.00818295582Open DOISearch in Google Scholar

Das BC, Tyagi A. Stem Cells: A Trek from Laboratory to Clinic to Industry. In: Ashish Verma S, Singh A, editors. Animal Biotechnology. UK, USA: Academic Press, an imprint of Elsevier Inc.; 2014. Chapter 23. Pages 425–50; DOI:10.1016/B978-0-12-416002-6.00023-7.DasBCTyagiAStem Cells: A Trek from Laboratory to Clinic to IndustryIn:Ashish VermaSSinghAeditors.Animal BiotechnologyUK, USAAcademic Press, an imprint of Elsevier Inc.2014Chapter 23.4255010.1016/B978-0-12-416002-6.00023-7Open DOISearch in Google Scholar

Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1): 27–36; DOI:10.1093/carcin/bgp220.SharmaSKellyTKJonesPAEpigenetics in cancerCarcinogenesis2010311273610.1093/carcin/bgp220Open DOISearch in Google Scholar

Wolffe AP, Matzke MA. Epigenetics: Regulation through repression. Science. 1999;286(5439):481–6; DOI:10.1126/science.286.5439.481.WolffeAPMatzkeMAEpigenetics: Regulation through repressionScience19992865439481610.1126/science.286.5439.481Open DOISearch in Google Scholar

Luo S, Pei J, Li X, Gu W. Decreased expression of JHDMID in placenta is associated with preeclampsia through HLA-G. J Hum Hypertens. 2018;32(6):448–54; DOI:10.1038/s41371-018-0062-1.LuoSPeiJLiXGuWDecreased expression of JHDMID in placenta is associated with preeclampsia through HLA-GJ Hum Hypertens20183264485410.1038/s41371-018-0062-1Open DOISearch in Google Scholar

Alonso-de Vega I, Paz-Cabrera MC, Rother MB, Wiegant WW, Checa-Rodríguez C, Hernández-Fernaud JR, Huertas P, Freire R, van Attikum H, Smits VAJ. PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks. Nucleic Acids Res. 2020;48(9):4915–27; DOI:10.1093/nar/gkaa196.Alonso-de VegaIPaz-CabreraMCRotherMBWiegantWWCheca-RodríguezCHernández-FernaudJRHuertasPFreireRvan AttikumHSmitsVAJPHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaksNucleic Acids Res202048949152710.1093/nar/gkaa196Open DOISearch in Google Scholar

Shao P, Liu Q, Maina PK, Cui J, Bair TB, Li T, Umesalma S, Zhang W, Qi HH. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 2017;45(4):1687–702; DOI:10.1093/nar/gkw1093.ShaoPLiuQMainaPKCuiJBairTBLiTUmesalmaSZhangWQiHHHistone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesisNucleic Acids Res2017454168770210.1093/nar/gkw1093Open DOISearch in Google Scholar

Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30(10):1255–61; DOI:10.1007/s10815-013-0068-0.DzaficEStimpfelMVirant-KlunIPlasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potentialJ Assist Reprod Genet2013301012556110.1007/s10815-013-0068-0Open DOISearch in Google Scholar

Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum Reprod. 2011;26(7):1616–24; DOI:10.1093/humrep/der092.FerrarettiAPLa MarcaAFauserBCJMTarlatzisBNargundGGianaroliLESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteriaHum Reprod201126716162410.1093/humrep/der092Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem19871621156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8; DOI:10.1006/meth.2001.1262.LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) MethodMethods2001254402810.1006/meth.2001.126211846609Open DOISearch in Google Scholar

R Core Team (2020). R: A language and environment for statistical computing. R A Lang Environ Stat Comput R Found Stat Comput Vienna, Austria. 2020.R Core Team2020R: A language and environment for statistical computingR A Lang Environ Stat Comput R Found Stat Comput ViennaAustria2020.Search in Google Scholar

Richards JS, Pangas SA. The ovary: Basic biology and clinical implications. J Clin Invest. 2010;120(4):963–72; DOI:10.1172/JCI41350.RichardsJSPangasSAThe ovary: Basic biology and clinical implicationsJ Clin Invest201012049637210.1172/JCI41350284606120364094Open DOISearch in Google Scholar

Kempisty B, Ziółkowska A, Ciesiółka S, Piotrowska H, Antosik P, Bukowska D, Nowicki M, Brüssow KP, Zabel M. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J Biol Regul Homeost Agents. 2014;28(4):625–35.KempistyBZiółkowskaACiesiółkaSPiotrowskaHAntosikPBukowskaDNowickiMBrüssowKPZabelMStudy on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cellsJ Biol Regul Homeost Agents201428462535Search in Google Scholar

Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88(4):399–413; DOI:10.1139/Y10-009.KidderGMVanderhydenBCBidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competenceCan J Physiol Pharmacol201088439941310.1139/Y10-009Open DOISearch in Google Scholar

Russo V, Berardinelli P, Martelli A, Di Giacinto O, Nardinocchi D, Fantasia D, Barboni B. Expression of telomerase reverse transcriptase subunit (TERT) and telomere sizing in pig ovarian follicles. J Histochem Cytochem. 2006;54(4):443–55; DOI:10.1369/jhc.4A6603.2006.RussoVBerardinelliPMartelliADi GiacintoONardinocchiDFantasiaDBarboniBExpression of telomerase reverse transcriptase subunit (TERT) and telomere sizing in pig ovarian folliclesJ Histochem Cytochem20065444435510.1369/jhc.4A6603.200616400001Open DOISearch in Google Scholar

Costa-Reis P, Sullivan KE. Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep. 2013;15(9):369; DOI:10.1007/s11926-013-0369-4.Costa-ReisPSullivanKEGenetics and epigenetics of systemic lupus erythematosusCurr Rheumatol Rep201315936910.1007/s11926-013-0369-423943494Open DOISearch in Google Scholar

Black JC, Van Rechem C, Whetstine JR. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol Cell. 2012;48(4):491–507; DOI:10.1016/j.molcel.2012.11.006.BlackJCVan RechemCWhetstineJRHistone Lysine Methylation Dynamics: Establishment, Regulation, and Biological ImpactMol Cell201248449150710.1016/j.molcel.2012.11.006386105823200123Open DOISearch in Google Scholar

Shi YG, Tsukada Y. The discovery of histone demethylases. Cold Spring Harb Perspect Biol. 2013;5(9):a017947; DOI:10.1101/cshperspect.a017947.ShiYGTsukadaYThe discovery of histone demethylasesCold Spring Harb Perspect Biol.201359a01794710.1101/cshperspect.a017947375371024003214Open DOISearch in Google Scholar

Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49(4):e324; DOI:10.1038/emm.2017.11.HyunKJeonJParkKKimJWriting, erasing and reading histone lysine methylationsExp Mol Med.2017494e32410.1038/emm.2017.11613021428450737Open DOISearch in Google Scholar

Tsukada YI, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–6; DOI:10.1038/nature04433.TsukadaYIFangJErdjument-BromageHWarrenMEBorchersCHTempstPZhangYHistone demethylation by a family of JmjC domain-containing proteinsNature20064397078811610.1038/nature0443316362057Open DOISearch in Google Scholar

Tsukada YI, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 2010;24(5):432–7; DOI:10.1101/gad.1864410.TsukadaYIIshitaniTNakayamaKIKDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain developmentGenes Dev2010245432710.1101/gad.1864410282783820194436Open DOISearch in Google Scholar

Osawa T, Muramatsu M, Wang F, Tsuchida R, Kodama T, Minami T, Shibuya M. Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci U S A. 2011;108(51):20725–9; DOI:10.1073/pnas.1108462109.OsawaTMuramatsuMWangFTsuchidaRKodamaTMinamiTShibuyaMIncreased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesisProc Natl Acad Sci U S A20111085120725910.1073/pnas.1108462109325110722143793Open DOISearch in Google Scholar

Tang Y, Chen ZY, Hong YZ, Wu Q, Lin HQ, Chen CD, Yang HT. Expression profiles of histone lysine demethylases during cardiomyocyte differentiation of mouse embryonic stem cells. Acta Pharmacol Sin. 2014;35(7):899–906; DOI:10.1038/aps.2014.40.TangYChenZYHongYZWuQLinHQChenCDYangHTExpression profiles of histone lysine demethylases during cardiomyocyte differentiation of mouse embryonic stem cellsActa Pharmacol Sin201435789990610.1038/aps.2014.40408828824989252Open DOISearch in Google Scholar

Okuno Y, Ohtake F, Igarashi K, Kanno J, Matsumoto T, Takada I, Kato S, Imai Y. Epigenetic regulation of adipogenesis by PHF2 histone demethylase. Diabetes. 2013;62(5):1426–34; DOI:10.2337/db12-0628.OkunoYOhtakeFIgarashiKKannoJMatsumotoTTakadaIKatoSImaiYEpigenetic regulation of adipogenesis by PHF2 histone demethylaseDiabetes201362514263410.2337/db12-0628363665723274892Open DOISearch in Google Scholar

Baba A, Ohtake F, Okuno Y, Yokota K, Okada M, Imai Y, Ni M, Meyer CA, Igarashi K, Kanno J, Brown M, Kato S. PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol. 2011;13(6):668–75; DOI:10.1038/ncb2228.BabaAOhtakeFOkunoYYokotaKOkadaMImaiYNiMMeyerCAIgarashiKKannoJBrownMKatoSPKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5BNat Cell Biol20111366687510.1038/ncb222821532585Open DOISearch in Google Scholar

Hasenpusch-Theil K, Chadwick BP, Theil T, Heath SK, Wilkinson DG, Frischauf AM. PHF2, a novel PHD finger gene located on human Chromosome 9q22. Mamm Genome. 1999;10(3):294–8; DOI:10.1007/s003359900989.Hasenpusch-TheilKChadwickBPTheilTHeathSKWilkinsonDGFrischaufAMPHF2, a novel PHD finger gene located on human Chromosome 9q22Mamm Genome1999103294810.1007/s00335990098910051327Open DOISearch in Google Scholar

Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ, Boutros M, Perrimon N, Rosenfeld MG, Glass CK. Control of Proinflammatory Gene Programs by Regulated Trimethylation and Demethylation of Histone H4K20. Mol Cell. 2012;48(1):28–38; DOI:10.1016/j.molcel.2012.07.020.StenderJDPascualGLiuWKaikkonenMUDoKSpannNJBoutrosMPerrimonNRosenfeldMGGlassCKControl of Proinflammatory Gene Programs by Regulated Trimethylation and Demethylation of Histone H4K20Mol Cell2012481283810.1016/j.molcel.2012.07.020347235922921934Open DOISearch in Google Scholar

Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, Li SH, Youn HD, Kim SJ, Chun YS. PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene. 2015;34(22):2897–909; DOI:10.1038/onc.2014.219.LeeKHParkJWSungHSChoiYJKimWHLeeHSChungHJShinHWChoCHKimTYLiSHYounHDKimSJChunYSPHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancerOncogene20153422289790910.1038/onc.2014.21925043306Open DOISearch in Google Scholar

Laumonnier F, Holbert S, Ronce N, Faravelli F, Lenzner S, Schwartz CE, Lespinasse J, Van Esch H, Lacombe D, Goizet C, Tuy FPD, Van Bokhoven H, Fryns JP, Chelly J, Ropers HH, Moraine C, Hamel BCJ, Briault S. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet. 2005;72(1):19–22; DOI:10.1136/jmg.2004.029439.LaumonnierFHolbertSRonceNFaravelliFLenznerSSchwartzCELespinasseJVan EschHLacombeDGoizetCTuyFPDVan BokhovenHFrynsJPChellyJRopersHHMoraineCHamelBCJBriaultSMutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palateJ Med Genet2005721192210.1136/jmg.2004.029439173592716199551Open DOISearch in Google Scholar

Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB, Gonzales M, Lan F, Ongusaha PP, Huarte M, Yaghi NK, Lim H, Garcia BA, Brizuela L, Zhao K, Roberts TM, Shi Y. Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature. 2010;466(7305):503–7; DOI:10.1038/nature09261.QiHHSarkissianMHuGQWangZBhattacharjeeAGordonDBGonzalesMLanFOngusahaPPHuarteMYaghiNKLimHGarciaBABrizuelaLZhaoKRobertsTMShiYHistone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial developmentNature20104667305503710.1038/nature09261307221520622853Open DOISearch in Google Scholar

Liu W, Tanasa B, Tyurina O V., Zhou TY, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK, Desai A, Dorrestein PC, Glass CK, Rosenfeld MG. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010;466(7305):508–512; DOI:10.1038/nature09272.LiuWTanasaBTyurinaO V.ZhouTYGassmannRLiuWTOhgiKABennerCGarcia-BassetsIAggarwalAKDesaiADorresteinPCGlassCKRosenfeldMGPHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progressionNature2010466730550851210.1038/nature09272305955120622854Open DOISearch in Google Scholar

Asensio-Juan E, Gallego C, Martínez-Balbás MA. The histone demethylase PHF8 is essential for cytoskeleton dynamics. Nucleic Acids Res. 2012;40(19):9429–40; DOI:10.1093/nar/gks716.Asensio-JuanEGallegoCMartínez-BalbásMAThe histone demethylase PHF8 is essential for cytoskeleton dynamicsNucleic Acids Res2012401994294010.1093/nar/gks716347918422850744Open DOISearch in Google Scholar

Krieg AJ, Mullinax SR, Grimstad F, Marquis K, Constance E, Hong Y, Krieg SA, Roby KF. Histone demethylase KDM4A and KDM4B expression in granulosa cells from women undergoing in vitro fertilization. J Assist Reprod Genet. 2018;35(6):993–1003; DOI:10.1007/s10815-018-1151-3.KriegAJMullinaxSRGrimstadFMarquisKConstanceEHongYKriegSARobyKFHistone demethylase KDM4A and KDM4B expression in granulosa cells from women undergoing in vitro fertilizationJ Assist Reprod Genet2018356993100310.1007/s10815-018-1151-3602999829536385Open DOISearch in Google Scholar

Seneda MM, Godmann M, Murphy BD, Kimmins S, Bordignon V. Developmental regulation of histone H3 methylation at lysine 4 in the porcine ovary. Reproduction. 2008;135(6):829–38; DOI:10.1530/REP-07-0448.SenedaMMGodmannMMurphyBDKimminsSBordignonVDevelopmental regulation of histone H3 methylation at lysine 4 in the porcine ovaryReproduction200813568293810.1530/REP-07-044818502896Open DOISearch in Google Scholar

Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology. 2019;160(10):2471–2484; DOI:10.1210/en.2019-00389.GuoXPuttabyatappaMThompsonRCPadmanabhanVDevelopmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOSEndocrinology2019160102471248410.1210/en.2019-00389676033831398247Open DOISearch in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry