Zacytuj

Xu Y, Niu J, Xi G, Niu X, Wang Y, Guo M, Yangzong Q, Yao Y, Sizhu SL, Tian J. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells. Gene. 2018;663:88–100; DOI:10.1016/j.gene.2018.04.036.XuYNiuJXiGNiuXWangYGuoMYangzongQYaoYSizhuSLTianJTGF-β1 resulting in differential microRNA expression in bovine granulosa cellsGene20186638810010.1016/j.gene.2018.04.03629665451Open DOISearch in Google Scholar

Corduk N, Abban G, Yildirim B, Sarioglu-Buke A. The effect of vitamin D on expression of TGF β1 in ovary. Exp Clin Endocrinol Diabetes. 2012;120:490–3; DOI:10.1055/s-0032-1314858.CordukNAbbanGYildirimBSarioglu-BukeAThe effect of vitamin D on expression of TGF β1 in ovaryExp Clin Endocrinol Diabetes2012120490310.1055/s-0032-131485822851187Open DOISearch in Google Scholar

Nagashima T, Kim J, Li Q, Lydon JP, DeMayo FJ, Lyons KM, Matzuk MM. Connective tissue growth factor is required for normal follicle development and ovulation. Mol Endocrinol. 2011;25:1740–59; DOI:2019041122541184000.NagashimaTKimJLiQLydonJPDeMayoFJLyonsKMMatzukMMConnective tissue growth factor is required for normal follicle development and ovulationMol Endocrinol201125174059DOI:201904112254118400010.1210/me.2011-1045318242421868453Search in Google Scholar

Piotrowska H, Kempisty B, Sosinska P, Ciesiolka S, Bukowska D, Antosik P, Rybska M, Brüssow KP, Nowicki M, Zabel M. The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: a review. Vet Med. 2013;58:505–15; DOI:10.17221/7082-VETMED.PiotrowskaHKempistyBSosinskaPCiesiolkaSBukowskaDAntosikPRybskaMBrüssowKPNowickiMZabelMThe role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: a reviewVet Med2013585051510.17221/7082-VETMEDOpen DOISearch in Google Scholar

Kranc W, Budna J, Kahan R, Chachuła A, Bryja A, Ciesiółka S, Borys S, Antosik P, Bukowska D, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents. 2017;31:1–8.KrancWBudnaJKahanRChachułaABryjaACiesiółkaSBorysSAntosikPBukowskaDBrüssowKPBruskaMNowickiMZabelMKempistyBMolecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cellsJ Biol Regul Homeost Agents2017311810.1155/2017/9738640Search in Google Scholar

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–9; DOI:10.1634/stemcells.2008-0233.Kossowska-TomaszczukKDeGeyter CDeGeyter MMartinIHolzgreveWScherberichAZhangH.The multipotency of luteinizing granulosa cells collected from mature ovarian folliclesStem Cells200927210910.1634/stemcells.2008-023319224509Open DOISearch in Google Scholar

Tepekoy F, Ozturk S, Sozen B, Ozay RS, Akkoyunlu G, Demir N. CD90 and CD105 expression in the mouse ovary and testis at different stages of postnatal development. Reprod Biol. 2015;15:195–204; DOI:10.1016/j.repbio.2015.10.004.TepekoyFOzturkSSozenBOzayRSAkkoyunluGDemirNCD90 and CD105 expression in the mouse ovary and testis at different stages of postnatal developmentReprod Biol20151519520410.1016/j.repbio.2015.10.00426679159Open DOISearch in Google Scholar

Okada H, Danoff TM, Kalluri R, Neilson EG. Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol. 1997;273:F563-574; DOI:10.1152/ajprenal.1997.273.4.F563.OkadaHDanoffTMKalluriRNeilsonEGEarly role of Fsp1 in epithelial-mesenchymal transformationAm J Physiol1997273F56357410.1152/ajprenal.1997.273.4.F5639362334Open DOISearch in Google Scholar

Amin Marashi F, Torabi A, Beaudry F. Granulosa cells exposed to fibroblast growth factor 8 and 18 reveal early onset of cell growth and survival. Int J Reprod Biomed. 2019;17:435–42; DOI:10.18502/ijrm.v17i6.4815.AminMarashi FTorabiABeaudryF.Granulosa cells exposed to fibroblast growth factor 8 and 18 reveal early onset of cell growth and survivalInt J Reprod Biomed2019174354210.18502/ijrm.v17i6.4815671951231508568Open DOISearch in Google Scholar

Brązert M, Kranc W, Celichowski P, Ożegowska K, Budna‑Tukan J, Jeseta M, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B. Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach. Mol Med Report. 2019; DOI:10.3892/mmr.2019.10709.BrązertMKrancWCelichowskiPOżegowskaKBudna‑TukanJJesetaMPawelczykLBruskaMZabelMNowickiMKempistyBNovel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approachMol Med Report201910.3892/mmr.2019.10709679795731702034Open DOISearch in Google Scholar

Kranc W, Brązert M, Budna J, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Chermuła B, Dyszkiewicz-Konwińska M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Bruska M, Nowicki M, Zabel M, Kempisty B. Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol. 2019;151:125–43; DOI:10.1007/s00418-018-1750-1.KrancWBrązertMBudnaJCelichowskiPBryjaANawrockiMJOżegowskaKJankowskiMChermułaBDyszkiewicz-KonwińskaMJesetaMPawelczykLBręborowiczARachońDBruskaMNowickiMZabelMKempistyB.Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro cultureHistochem Cell Biol20191511254310.1007/s00418-018-1750-1639467530382374Open DOISearch in Google Scholar

Chomczyński P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczyńskiPSacchiN.Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2 (−delta delta Ct) method. Methods. 2001;25:402–8; DOI:10.1006/meth.2001.1262.LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative pcr and the 2 (−delta delta Ct) methodMethods200125402810.1006/meth.2001.126211846609Open DOISearch in Google Scholar

Razali NM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Mod Anal. 2011;2:13.RazaliNMWahYBPower comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling testsJ Stat Mod Anal2011213Search in Google Scholar

Shapiro SS, Wilk MB. An Analysis of Variance Test for Normality (Complete Samples). Biometrika. 1965;52:591–611; DOI:10.2307/2333709.ShapiroSSWilkMBAn Analysis of Variance Test for Normality (Complete Samples)Biometrika19655259161110.2307/2333709Open DOISearch in Google Scholar

Ai A, Tang Z, Liu Y, Yu S, Li B, Huang H, Wang X, Cao Y, Zhang W. Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp Ther Med. 2019;18:2167–77; DOI:10.3892/etm.2019.7802.AiATangZLiuYYuSLiBHuangHWangXCaoYZhangWCharacterization and identification of human immortalized granulosa cells derived from ovarian follicular fluidExp Ther Med20191821677710.3892/etm.2019.7802670493431452708Open DOISearch in Google Scholar

Dodson WC, Schomberg DW. The effect of transforming growth factor-beta on follicle-stimulating hormone-induced differentiation of cultured rat granulosa cells. Endocrinology. 1987;120:512–6; DOI:2016092613452600865.DodsonWCSchombergDWThe effect of transforming growth factor-beta on follicle-stimulating hormone-induced differentiation of cultured rat granulosa cellsEndocrinology19871205126DOI:201609261345260086510.1210/endo-120-2-5123026778Search in Google Scholar

Mansouri-Attia N, Tripurani SK, Gokul N, Piard H, Anderson ML, Eldin K, Pangas SA. TGFβ signaling promotes juvenile granulosa cell tumorigenesis by suppressing apoptosis. Mol Endocrinol. 2014;28:1887–98; DOI:2020071613391521600.Mansouri-AttiaNTripuraniSKGokulNPiardHAndersonMLEldinKPangasSA.TGFβ signaling promotes juvenile granulosa cell tumorigenesis by suppressing apoptosisMol Endocrinol201428188798DOI:202007161339152160010.1210/me.2014-1217421336425243859Search in Google Scholar

Li Y, Xiang Y, Song Y, Wan L, Yu G, Tan L. Dysregulated miR-142, -33b and -423 in granulosa cells target TGFBR1 and SMAD7: a possible role in polycystic ovary syndrome. Mol Hum Reprod. 2019;25:638–46; DOI:10.1093/molehr/gaz014.LiYXiangYSongYWanLYuGTanLDysregulated miR-142, -33b and -423 in granulosa cells target TGFBR1 and SMAD7: a possible role in polycystic ovary syndromeMol Hum Reprod2019256384610.1093/molehr/gaz01430865275Open DOISearch in Google Scholar

Nakerakanti S, Trojanowska M. The role of TGF-β receptors in fibrosis. Open Rheum J. 2012;6; DOI:10.2174/1874312901206010156.NakerakantiSTrojanowskaMThe role of TGF-β receptors in fibrosisOpen Rheum J2012610.2174/1874312901206010156339605422802914Open DOISearch in Google Scholar

Ríus C, Smith JD, Almendro N, Langa C, Botella LM, Marchuk DA, Vary CP, Bernabéu C. Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood. 1998;92:4677–90.RíusCSmithJDAlmendroNLangaCBotellaLMMarchukDAVaryCPBernabéuC.Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1Blood19989246779010.1182/blood.V92.12.4677Search in Google Scholar

Basini G, Falasconi I, Bussolati S, Grolli S, Di Lecce R, Grasselli F. Swine Granulosa Cells Show Typical Endothelial Cell Characteristics. Reprod Sci. 2016;23:630–7; DOI:10.1177/1933719115612130.BasiniGFalasconiIBussolatiSGrolliSDiLecce RGrasselliFSwine Granulosa Cells Show Typical Endothelial Cell CharacteristicsReprod Sci201623630710.1177/193371911561213026494700Open DOISearch in Google Scholar

Lawson WE, Polosukhin VV, Zoia O, Stathopoulos GT, Han W, Plieth D, Loyd JE, Neilson EG, Blackwell TS. Characterization of fibroblast-specific protein 1 in pulmonary fibrosis. Am J Respir Crit Care Med. 2005;171:899–907; DOI:10.1164/rccm.200311-1535OC.LawsonWEPolosukhinVVZoiaOStathopoulosGTHanWPliethDLoydJENeilsonEGBlackwellTSCharacterization of fibroblast-specific protein 1 in pulmonary fibrosisAm J Respir Crit Care Med200517189990710.1164/rccm.200311-1535OC15618458Open DOISearch in Google Scholar

Okada H, Danoff TM, Fischer A, Lopez-Guisa JM, Strutz F, Neilson EG. Identification of a novel cis-acting element for fibroblast-specific transcription of the FSP1 gene. Am J Physiol. 1998;275:F306-314; DOI:10.1152/ajprenal.1998.275.2.F306.OkadaHDanoffTMFischerALopez-GuisaJMStrutzFNeilsonEGIdentification of a novel cis-acting element for fibroblast-specific transcription of the FSP1 geneAm J Physiol1998275F30631410.1152/ajprenal.1998.275.2.F3069691022Open DOISearch in Google Scholar

Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol. 1995;130:393–405; DOI:10.1083/jcb.130.2.393.StrutzFOkadaHLoCWDanoffTCaroneRLTomaszewskiJENeilsonEGIdentification and characterization of a fibroblast marker: FSP1J Cell Biol199513039340510.1083/jcb.130.2.39321999407615639Open DOISearch in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry