Zacytuj

Jahoda CAB, Whitehouse CJ, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol. 2003;12:849–59; DOI:10.1111/j.0906-6705.2003.00161.x.JahodaCABWhitehouseCJReynoldsAJHoleNHair follicle dermal cells differentiate into adipogenic and osteogenic lineagesExp Dermatol2003128495910.1111/j.0906-6705.2003.00161.x14714566Open DOISearch in Google Scholar

Xing F, Duan X, Liu M, Chen J, Long C, Chen R, Sun J, Wu S, Chen L, Xiang Z. Construction and preliminary study on biological characteristics of composite cell sheets of mesenchymal stem cells and endothelial progenitor cells derived from peripheral blood. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020;34:109–15; DOI:10.7507/1002-1892.201901087.XingFDuanXLiuMChenJLongCChenRSunJWuSChenLXiangZConstruction and preliminary study on biological characteristics of composite cell sheets of mesenchymal stem cells and endothelial progenitor cells derived from peripheral bloodZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi2020341091510.7507/1002-1892.201901087817181831939245Open DOISearch in Google Scholar

Snippert HJ, Haegebarth A, Kasper M, Jaks V, Van Es JH, Barker N, Van De Wetering M, Van Den Born M, Begthel H, Vries RG, Stange DE, Toftgård R, Clevers H. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science (80- ). 2010;327:1385–9; DOI:10.1126/science.1184733.SnippertHJHaegebarthAKasperMJaksVVanEs JHBarkerNVanDe Wetering MVanDen Born MBegthelHVriesRGStangeDEToftgårdRCleversH.Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skinScience (80- )20103271385910.1126/science.118473320223988Open DOISearch in Google Scholar

Hagner A, Shin W, Sinha S, Alpaugh W, Workentine M, Abbasi S, Rahmani W, Agabalyan N, Sharma N, Sparks H, Yoon J, Labit E, Cobb J, Dobrinski I, Biernaskie J. Transcriptional Profiling of the Adult Hair Follicle Mesenchyme Reveals R-spondin as a Novel Regulator of Dermal Progenitor Function. IScience. 2020;23:101019; DOI:10.1016/j.isci.2020.101019.HagnerAShinWSinhaSAlpaughWWorkentineMAbbasiSRahmaniWAgabalyanNSharmaNSparksHYoonJLabitECobbJDobrinskiIBiernaskieJTranscriptional Profiling of the Adult Hair Follicle Mesenchyme Reveals R-spondin as a Novel Regulator of Dermal Progenitor FunctionIScience20202310101910.1016/j.isci.2020.101019715520932289736Open DOISearch in Google Scholar

Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One. 2014;9; DOI:10.1371/journal.pone.0115963.BeaneOSFonsecaVCCooperLLKorenGDarlingEMImpact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cellsPLoS One2014910.1371/journal.pone.0115963427742625541697Open DOISearch in Google Scholar

Raggi C, Berardi AC. Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012;2:239–42.RaggiCBerardiACMesenchymal stem cells, aging and regenerative medicineMuscles Ligaments Tendons J2012223942Search in Google Scholar

Jain A, Khadwal A, Sachdeva MUS, Bose P, Lad D, Bhattacharya S, Prakash G, Malhotra P, Varma N, Varma S. Variables affecting the presence of mesenchymal stromal cells in peripheral blood and their relationship with apheresis products. Br J Haematol. 2020;189:772–6; DOI:10.1111/bjh.16412.JainAKhadwalASachdevaMUSBosePLadDBhattacharyaSPrakashGMalhotraPVarmaNVarmaSVariables affecting the presence of mesenchymal stromal cells in peripheral blood and their relationship with apheresis productsBr J Haematol2020189772610.1111/bjh.1641232011732Open DOISearch in Google Scholar

Svensson PA, Lindberg K, Hoffmann JM, Taube M, Pereira MJ, Mohsen-Kanson T, Hafner AL, Rizell M, Palming J, Dani C, Svensson MK. Characterization of brown adipose tissue in the human perirenal depot. Obesity. 2014;22:1830–7; DOI:10.1002/oby.20765.SvenssonPALindbergKHoffmannJMTaubeMPereiraMJMohsen-KansonTHafnerALRizellMPalmingJDaniCSvenssonMKCharacterization of brown adipose tissue in the human perirenal depotObesity2014221830710.1002/oby.2076524753268Open DOISearch in Google Scholar

Wu NN, Zhang CH, Lee HJ, Ma Y, Wang X, Ma XJ, Ma W, Zhao D, Feng YM. Brown adipogenic potential of brown adipocytes and peri-renal adipocytes from human embryo. Sci Rep. 2016;6:1–12; DOI:10.1038/srep39193.WuNNZhangCHLeeHJMaYWangXMaXJMaWZhaoDFengYMBrown adipogenic potential of brown adipocytes and peri-renal adipocytes from human embryoSci Rep2016611210.1038/srep39193515984227982067Open DOISearch in Google Scholar

Zhang C, Wang JJ, He X, Wang C, Zhang B, Xu J, Xu W, Luo Y, Huang K. Characterization and beige adipogenic potential of human embryo white adipose tissue-derived stem cells. Cell Physiol Biochem. 2018;51:2900–15; DOI:10.1159/000496042.ZhangCWangJJHeXWangCZhangBXuJXuWLuoYHuangKCharacterization and beige adipogenic potential of human embryo white adipose tissue-derived stem cellsCell Physiol Biochem20185129001510.1159/00049604230562744Open DOISearch in Google Scholar

Villard O, Armanet M, Couderc G, Bony C, Moreaux J, Noël D, Devos J, Klein B, Veyrune JL, Wojtusciszyn A. Characterization of immortalized human islet stromal cells reveals a MSC-like profile with pancreatic features. Stem Cell Res Ther. 2020;11:158; DOI:10.1186/s13287-020-01649-z.VillardOArmanetMCoudercGBonyCMoreauxJNoëlDDevosJKleinBVeyruneJLWojtusciszynACharacterization of immortalized human islet stromal cells reveals a MSC-like profile with pancreatic featuresStem Cell Res Ther20201115810.1186/s13287-020-01649-z716539032303252Open DOISearch in Google Scholar

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72; DOI:10.1016/j.cell.2007.11.019.TakahashiKTanabeKOhnukiMNaritaMIchisakaTTomodaKYamanakaSInduction of pluripotent stem cells from adult human fibroblasts by defined factorsCell20071318617210.1016/j.cell.2007.11.01918035408Open DOISearch in Google Scholar

Soares FAC, Pedersen RA, Vallier L. Generation of human induced pluripotent stem cells from peripheral blood mononuclear cells using sendai virus. Methods Mol. Biol. Humana Press Inc. 2016;1357:23-31; DOI:10.1007/7651_2015_202.SoaresFACPedersenRAVallierLGeneration of human induced pluripotent stem cells from peripheral blood mononuclear cells using sendai virusMethods Mol Biol. Humana Press Inc20161357233110.1007/7651_2015_20225687300Open DOISearch in Google Scholar

Ye H, Wang Q. Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai Virus. Cell Physiol Biochem. 2018;50:1318–31; DOI:10.1159/000494589.YeHWangQEfficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai VirusCell Physiol Biochem20185013183110.1159/00049458930355953Open DOISearch in Google Scholar

Kamarudin TA, Bojic S, Collin J, Yu M, Alharthi S, Buck H, Shortt A, Armstrong L, Figueiredo FC, Lako M. Differences in the activity of endogenous bone morphogenetic protein signaling impact on the ability of induced pluripotent stem cells to differentiate to corneal epithelial-like cells. Stem Cells. 2018;36:337–48; DOI:10.1002/stem.2750.KamarudinTABojicSCollinJYuMAlharthiSBuckHShorttAArmstrongLFigueiredoFCLakoMDifferences in the activity of endogenous bone morphogenetic protein signaling impact on the ability of induced pluripotent stem cells to differentiate to corneal epithelial-like cellsStem Cells2018363374810.1002/stem.2750583925329226476Open DOISearch in Google Scholar

Wang LT, Jiang SS, Ting CH, Hsu PJ, Chang CC, Sytwu HK, Liu KJ, Yen BL. Differentiation of mesenchymal stem cells from human induced pluripotent stem cells results in downregulation of c-myc and dna replication pathways with immunomodulation toward cd4 and cd8 cells. Stem Cells. 2018;36:903–14; DOI:10.1002/stem.2795.WangLTJiangSSTingCHHsuPJChangCCSytwuHKLiuKJYenBLDifferentiation of mesenchymal stem cells from human induced pluripotent stem cells results in downregulation of c-myc and dna replication pathways with immunomodulation toward cd4 and cd8 cellsStem Cells2018369031410.1002/stem.279529396902Open DOISearch in Google Scholar

Sugimoto N, Eto K. Platelet production from induced pluripotent stem cells. J Thromb Haemost. 2017;15:1717–27; DOI:10.1111/jth.13736.SugimotoNEtoKPlatelet production from induced pluripotent stem cellsJ Thromb Haemost20171517172710.1111/jth.1373628752663Open DOISearch in Google Scholar

Filgueiras-Rama D, Vasilijevic J, Jalife J, Noujaim SF, Alfonso JM, Nicolas-Avila JA, Gutierrez C, Zamarreño N, Hidalgo A, Bernabé A, Cop CP, Ponce-Balbuena D, Guerrero-Serna G, Calle D, Desco M, Ruiz-Cabello J, Nieto A, Falcon A. Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovasc Res. 2020; DOI:10.1093/cvr/cvaa117.Filgueiras-RamaDVasilijevicJJalifeJNoujaimSFAlfonsoJMNicolas-AvilaJAGutierrezCZamarreñoNHidalgoABernabéACopCPPonce-BalbuenaDGuerrero-SernaGCalleDDescoMRuiz-CabelloJNietoAFalconAHuman influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature deathCardiovasc Res202010.1093/cvr/cvaa117789894832346730Open DOISearch in Google Scholar

Wang Y, Liang G, Liang S, Mund R, Shi Y, Wei H. Dantrolene ameliorates impaired neurogenesis and synaptogenesis in induced pluripotent stem cell lines derived from patients with alzheimer’s disease. Anesthesiology. 2020;132:1062–79; DOI:10.1097/ALN.0000000000003224.WangYLiangGLiangSMundRShiYWeiHDantrolene ameliorates impaired neurogenesis and synaptogenesis in induced pluripotent stem cell lines derived from patients with alzheimer’s diseaseAnesthesiology202013210627910.1097/ALN.0000000000003224716000932149777Open DOISearch in Google Scholar

Murphy S V., Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85; DOI:10.1038/nbt.2958.MurphyS V.AtalaA3D bioprinting of tissues and organsNat Biotechnol2014327738510.1038/nbt.295825093879Open DOISearch in Google Scholar

Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, Ivanišević Z, Barbeck M. An introduction to 3D bioprinting: Possibilities, challenges and future aspects. Materials (Basel). 2018;11; DOI:10.3390/ma11112199.KačarevićŽPRiderPMAlkildaniSRetnasinghSSmeetsRJungOIvaniševićZBarbeckM.An introduction to 3D bioprinting: Possibilities, challenges and future aspectsMaterials (Basel)20181110.3390/ma11112199626698930404222Open DOISearch in Google Scholar

Mehrban N, Teoh GZ, Birchall MA. 3D bioprinting for tissue engineering: Stem cells in hydrogels. Int J Bioprinting. 2016;2:6–19; DOI:10.18063/IJB.2016.01.006.MehrbanNTeohGZBirchallMA3D bioprinting for tissue engineering: Stem cells in hydrogelsInt J Bioprinting2016261910.18063/IJB.2016.01.006Open DOISearch in Google Scholar

Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1; DOI:10.1016/j.mtbio.2019.100008.AshammakhiNAhadianSXuCMontazerianHKoHNasiriRBarrosNKhademhosseiniABioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructsMater Today Bio2019110.1016/j.mtbio.2019.100008706163432159140Open DOISearch in Google Scholar

Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, Skottman H. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57–71; DOI:10.1016/j.biomaterials.2018.04.034.SorkioAKochLKoivusaloLDeiwickAMiettinenSChichkovBSkottmanHHuman stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinksBiomaterials2018171577110.1016/j.biomaterials.2018.04.03429684677Open DOISearch in Google Scholar

Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater. 2013;25:5011–28; DOI:10.1002/adma.201302042.MaldaJVisserJMelchelsFPJüngstTHenninkWEDhertWJAGrollJHutmacherDW25th anniversary article: Engineering hydrogels for biofabricationAdv Mater20132550112810.1002/adma.20130204224038336Open DOISearch in Google Scholar

Sakai S, Ohi H, Taya M. Gelatin/hyaluronic acid content in hydrogels obtained through blue light-induced gelation affects hydrogel properties and adipose stem cell behaviors. Biomolecules. 2019;9; DOI:10.3390/biom9080342.SakaiSOhiHTayaMGelatin/hyaluronic acid content in hydrogels obtained through blue light-induced gelation affects hydrogel properties and adipose stem cell behaviorsBiomolecules2019910.3390/biom9080342672278931387235Open DOISearch in Google Scholar

Lavrentieva A, Kirsch M, Birnstein L, Pepelanova I, Handke W, Rach J, Seltsam A, Scheper T. Gelatin-methacryloyl (GelMA) formulated with human platelet lysate supports mesenchymal stem cell proliferation and differentiation and enhances the hydrogel’s mechanical properties. Bioengineering. 2019;6; DOI:10.3390/bioengineering6030076.LavrentievaAKirschMBirnsteinLPepelanovaIHandkeWRachJSeltsamAScheperTGelatin-methacryloyl (GelMA) formulated with human platelet lysate supports mesenchymal stem cell proliferation and differentiation and enhances the hydrogel’s mechanical propertiesBioengineering2019610.3390/bioengineering6030076678414031466260Open DOISearch in Google Scholar

Benning L, Gutzweiler L, Tröndle K, Riba J, Zengerle R, Koltay P, Zimmermann S, Stark GB, Finkenzeller G. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J Biomed Mater Res - Part A. 2017;105:3231–41; DOI:10.1002/jbm.a.36179.BenningLGutzweilerLTröndleKRibaJZengerleRKoltayPZimmermannSStarkGBFinkenzellerGCytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cellsJ Biomed Mater Res - Part A201710532314110.1002/jbm.a.3617928782179Open DOISearch in Google Scholar

Flanagan LA, Lu J, Wang L, Marchenko SA, Jeon NL, Lee AP, Monuki ES. Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells. 2008;26:656–65; DOI:10.1634/stemcells.2007-0810.FlanaganLALuJWangLMarchenkoSAJeonNLLeeAPMonukiESUnique dielectric properties distinguish stem cells and their differentiated progenyStem Cells2008266566510.1634/stemcells.2007-081018096719Open DOISearch in Google Scholar

Xavier M, Oreffo ROC, Morgan H. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques. Biotechnol Adv. 2016;34:908–23; DOI:10.1016/j.biotechadv.2016.05.008.XavierMOreffoROCMorganHSkeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniquesBiotechnol Adv2016349082310.1016/j.biotechadv.2016.05.00827236022Open DOISearch in Google Scholar

Luo J, Nelson EL, Li GP, Bachman M. Microfluidic dielectrophoretic sorter using gel vertical electrodes. Biomicrofluidics. 2014;8; DOI:10.1063/1.4880244.LuoJNelsonELLiGPBachmanMMicrofluidic dielectrophoretic sorter using gel vertical electrodesBiomicrofluidics2014810.1063/1.4880244403242224926390Open DOISearch in Google Scholar

Chan JY, Ahmad Kayani A Bin, Md Ali MA, Kok CK, Yeop Majlis B, Hoe SLL, Marzuki M, Khoo ASB, Ostrikov K, Ataur Rahman M, Sriram S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics. 2018;12; DOI:10.1063/1.5010158.ChanJYAhmadKayani A BinMdAli MAKokCKYeopMajlis BHoeSLLMarzukiMKhooASBOstrikovKAtaurRahman MSriramS.Dielectrophoresis-based microfluidic platforms for cancer diagnosticsBiomicrofluidics20181210.1063/1.5010158582523029531634Open DOISearch in Google Scholar

Yoshioka J, Ohsugi Y, Yoshitomi T, Yasukawa T, Sasaki N, Yoshimoto K. Label-free rapid separation and enrichment of bone marrow-derived mesenchymal stem cells from a heterogeneous cell mixture using a dielectrophoresis device. Sensors (Switzerland). 2018;18; DOI:10.3390/s18093007.YoshiokaJOhsugiYYoshitomiTYasukawaTSasakiNYoshimotoKLabel-free rapid separation and enrichment of bone marrow-derived mesenchymal stem cells from a heterogeneous cell mixture using a dielectrophoresis deviceSensors (Switzerland)20181810.3390/s18093007616381630205546Open DOISearch in Google Scholar

Sawicki W, Malejczyk J, Wróblewska Martyna. Ujarzmienie starzenia: odmładzanie komórek, dedyferencjacja i transdyferencjacja. Gerontol Pol. 2015.SawickiWMalejczykJWróblewska Martyna. Ujarzmienie starzenia: odmładzanie komórek, dedyferencjacja i transdyferencjacjaGerontol Pol2015Search in Google Scholar

Lis R, Karrasch CC, Poulos MG, Kunar B, Redmond D, Duran JGB, Badwe CR, Schachterle W, Ginsberg M, Xiang J, Tabrizi AR, Shido K, Rosenwaks Z, Elemento O, Speck NA, Butler JM, Scandura JM, Rafii S. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545:439–45; DOI:10.1038/nature22326.LisRKarraschCCPoulosMGKunarBRedmondDDuranJGBBadweCRSchachterleWGinsbergMXiangJTabriziARShidoKRosenwaksZElementoOSpeckNAButlerJMScanduraJMRafiiSConversion of adult endothelium to immunocompetent haematopoietic stem cellsNature20175454394510.1038/nature22326579421528514438Open DOISearch in Google Scholar

Dai T-Q, Zhang L-L, An Y, Xu F-F, An R, Xu H-Y, Liu Y-P, Liu B. In vitro transdifferentiation of adipose tissue-derived stem cells into salivary gland acinar-like cells. Am J Transl Res. 2019;11:2908–24.DaiT-QZhangL-LAnYXuF-FAnRXuH-YLiuY-PLiuBIn vitro transdifferentiation of adipose tissue-derived stem cells into salivary gland acinar-like cellsAm J Transl Res201911290824Search in Google Scholar

Shivakumar SB, Lee HJ, Son YB, Bharti D, Ock SA, Lee SL, Kang YH, Park BW, Rho GJ. In vitro differentiation of single donor derived human dental mesenchymal stem cells into pancreatic β cell-like cells. Biosci Rep. 2019;39; DOI:10.1042/BSR20182051.ShivakumarSBLeeHJSonYBBhartiDOckSALeeSLKangYHParkBWRhoGJIn vitro differentiation of single donor derived human dental mesenchymal stem cells into pancreatic β cell-like cellsBiosci Rep20193910.1042/BSR20182051652793331015367Open DOISearch in Google Scholar

Grässer U, Bubel M, Sossong D, Oberringer M, Pohlemann T, Metzger W. Dissociation of mono- and co-culture spheroids into single cells for subsequent flow cytometric analysis. Ann Anat. 2018;216:1–8; DOI:10.1016/j.aanat.2017.10.002.GrässerUBubelMSossongDOberringerMPohlemannTMetzgerW.Dissociation of mono- and co-culture spheroids into single cells for subsequent flow cytometric analysisAnn Anat20182161810.1016/j.aanat.2017.10.00229162481Open DOISearch in Google Scholar

Cho CF, Wolfe JM, Fadzen CM, Calligaris D, Hornburg K, Chiocca EA, Agar NYR, Pentelute BL, Lawler SE. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun. 2017;8; DOI:10.1038/ncomms15623.ChoCFWolfeJMFadzenCMCalligarisDHornburgKChioccaEAAgarNYRPenteluteBLLawlerSEBlood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agentsNat Commun2017810.1038/ncomms15623546717328585535Open DOISearch in Google Scholar

Vorrink SU, Zhou Y, Ingelman-Sundberg M, Lauschke VM. Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions. Toxicol Sci. 2018;163:655–65; DOI:10.1093/toxsci/kfy058.VorrinkSUZhouYIngelman-SundbergMLauschkeVMPrediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditionsToxicol Sci20181636556510.1093/toxsci/kfy058597477929590495Open DOISearch in Google Scholar

Lazzari G, Nicolas V, Matsusaki M, Akashi M, Couvreur P, Mura S. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 2018;78:296–307; DOI:10.1016/j.actbio.2018.08.008.LazzariGNicolasVMatsusakiMAkashiMCouvreurPMuraSMulticellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexityActa Biomater20187829630710.1016/j.actbio.2018.08.00830099198Open DOISearch in Google Scholar

Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Yang SM, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP, Boyden ES, Lichtman JW, Williams ZM, McCarroll SA, Arlotta P. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48–53; DOI:10.1038/nature22047.QuadratoGNguyenTMacoskoEZSherwoodJLYangSMBergerDRMariaNScholvinJGoldmanMKinneyJPBoydenESLichtmanJWWilliamsZMMcCarrollSAArlottaPCell diversity and network dynamics in photosensitive human brain organoidsNature2017545485310.1038/nature22047565934128445462Open DOISearch in Google Scholar

Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, Nolta JA, Waldau B. Generation of human vascularized brain organoids. Neuroreport. 2018;29:588–93; DOI:10.1097/WNR.0000000000001014.PhamMTPollockKMRoseMDCaryWAStewartHRZhouPNoltaJAWaldauBGeneration of human vascularized brain organoidsNeuroreport2018295889310.1097/WNR.0000000000001014647653629570159Open DOISearch in Google Scholar

Lee SH, Hu W, Matulay JT, Silva M V., Owczarek TB, Kim K, Chua CW, Barlow LMJ, Kandoth C, Williams AB, Bergren SK, Pietzak EJ, Anderson CB, Benson MC, Coleman JA, Taylor BS, Abate-Shen C, McKiernan JM, Al-Ahmadie H, Solit DB, Shen MM. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173:515-528.e17; DOI:10.1016/j.cell.2018.03.017.LeeSHHuWMatulayJTSilvaM V.OwczarekTBKimKChuaCWBarlowLMJKandothCWilliamsABBergrenSKPietzakEJAndersonCBBensonMCColemanJATaylorBSAbate-ShenCMcKiernanJMAl-AhmadieHSolitDBShenMMTumor evolution and drug response in patient-derived organoid models of bladder cancerCell2018173515528e1710.1016/j.cell.2018.03.017589094129625057Open DOISearch in Google Scholar

Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, Korving J, van Boxtel R, Duarte AA, Lelieveld D, van Hoeck A, Ernst RF, Blokzijl F, Nijman IJ, Hoogstraat M, van de Ven M, Egan DA, Zinzalla V, Moll J, Boj SF, Voest EE, Wessels L, van Diest PJ, Rottenberg S, Vries RGJ, Cuppen E, Clevers H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172:373-386.e10; DOI:10.1016/j.cell.2017.11.010.SachsNdeLigt JKopperOGogolaEBounovaGWeeberFBalgobindAVWindKGracaninABegthelHKorvingJvanBoxtel RDuarteAALelieveldDvanHoeck AErnstRFBlokzijlFNijmanIJHoogstraatMvande Ven MEganDAZinzallaVMollJBojSFVoestEEWesselsLvanDiest PJRottenbergSVriesRGJCuppenECleversH.A living biobank of breast cancer organoids captures disease heterogeneityCell2018172373386e1010.1016/j.cell.2017.11.01029224780Open DOISearch in Google Scholar

Hu H, Gehart H, Artegiani B, LÖpez-Iglesias C, Dekkers F, Basak O, van Es J, Chuva de Sousa Lopes SM, Begthel H, Korving J, van den Born M, Zou C, Quirk C, Chiriboga L, Rice CM, Ma S, Rios A, Peters PJ, de Jong YP, Clevers H. Long-term expansion of functional mouse and human hepatocytes as 3d organoids. Cell. 2018;175:1591-1606.e19; DOI:10.1016/j.cell.2018.11.013.HuHGehartHArtegianiBLÖpez-IglesiasCDekkersFBasakOvanEs JChuvade Sousa Lopes SMBegthelHKorvingJvanden Born MZouCQuirkCChiribogaLRiceCMMaSRiosAPetersPJdeJong YPCleversH.Long-term expansion of functional mouse and human hepatocytes as 3d organoidsCell201817515911606e1910.1016/j.cell.2018.11.01330500538Open DOISearch in Google Scholar

Martin-Piedra MA, Alfonso-Rodriguez CA, Zapater A, Durand-Herrera D, Chato-Astrain J, Campos F, Sanchez-Quevedo MC, Alaminos M, Garzon I. Effective use of mesenchymal stem cells in human skin substitutes generated by tissue engineering. Eur Cell Mater. 2019;37:233–49; DOI:10.22203/eCM.v037a14.Martin-PiedraMAAlfonso-RodriguezCAZapaterADurand-HerreraDChato-AstrainJCamposFSanchez-QuevedoMCAlaminosMGarzonI.Effective use of mesenchymal stem cells in human skin substitutes generated by tissue engineeringEur Cell Mater2019372334910.22203/eCM.v037a1430924522Open DOISearch in Google Scholar

Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, Kim MB, Lee H, Kim JH, Cho DW. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 2018;168:38–53; DOI:10.1016/j.biomaterials.2018.03.040.KimBSKwonYWKongJSParkGTGaoGHanWKimMBLeeHKimJHChoDW3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineeringBiomaterials2018168385310.1016/j.biomaterials.2018.03.04029614431Open DOISearch in Google Scholar

Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, Scaglione D, Reichelt J, Klausegger A, Kneisz D, Romano O, Seconetti AS, Contin R, Enzo E, Jurman I, Carulli S, Jacobsen F, Luecke T, Lehnhardt M, Fischer M, Kueckelhaus M, Quaglino D, Morgante M, Bicciato S, Bondanza S, De Luca M. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551:327–32; DOI:10.1038/nature24487.HirschTRothoeftTTeigNBauerJWPellegriniGDeRosa LScaglioneDReicheltJKlauseggerAKneiszDRomanoOSeconettiASContinREnzoEJurmanICarulliSJacobsenFLueckeTLehnhardtMFischerMKueckelhausMQuaglinoDMorganteMBicciatoSBondanzaSDeLuca M.Regeneration of the entire human epidermis using transgenic stem cellsNature20175513273210.1038/nature24487628327029144448Open DOISearch in Google Scholar

Levato R, Webb WR, Otto IA, Mensinga A, Zhang Y, van Rijen M, van Weeren R, Khan IM, Malda J. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater. 2017;61:41–53; DOI:10.1016/j.actbio.2017.08.005.LevatoRWebbWROttoIAMensingaAZhangYvanRijen MvanWeeren RKhanIMMaldaJ.The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cellsActa Biomater201761415310.1016/j.actbio.2017.08.005711602328782725Open DOISearch in Google Scholar

Lu J, Shen X, Sun X, Yin H, Yang S, Lu C, Wang Y, Liu Y, Huang Y, Yang Z, Dong X, Wang C, Guo Q, Zhao L, Sun X, Lu S, Mikos AG, Peng J, Wang X. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics. 2018;8:5039–58; DOI:10.7150/thno.26981.LuJShenXSunXYinHYangSLuCWangYLiuYHuangYYangZDongXWangCGuoQZhaoLSunXLuSMikosAGPengJWangXIncreased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regenerationTheranostics2018850395810.7150/thno.26981621707030429885Open DOISearch in Google Scholar

Neybecker P, Henrionnet C, Pape E, Mainard D, Galois L, Loeuille D, Gillet P, Pinzano A. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Res Ther. 2018;9; DOI:10.1186/s13287-018-1071-2.NeybeckerPHenrionnetCPapeEMainardDGaloisLLoeuilleDGilletPPinzanoAIn vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cellsStem Cell Res Ther2018910.1186/s13287-018-1071-2626306330486903Open DOISearch in Google Scholar

Jia J, Bai F, Jin Y, Santostefano KE, Ha U-H, Wu D, Wu W, Terada N, Jin S. Efficient gene editing in pluripotent stem cells by bacterial injection of transcription activator-like effector nuclease proteins. Stem Cells Transl Med. 2015;4:913–26; DOI:10.5966/sctm.2015-0030.JiaJBaiFJinYSantostefanoKEHaU-HWuDWuWTeradaNJinSEfficient gene editing in pluripotent stem cells by bacterial injection of transcription activator-like effector nuclease proteinsStem Cells Transl Med201549132610.5966/sctm.2015-0030451115026062981Open DOISearch in Google Scholar

Lux CT, Pattabhi S, Berger M, Nourigat C, Flowers DA, Negre O, Humbert O, Yang JG, Lee C, Jacoby K, Bernstein I, Kiem HP, Scharenberg A, Rawlings DJ. TALEN-mediated gene editing of hbg in human hematopoietic stem cells leads to therapeutic fetal hemoglobin induction. Mol Ther - Methods Clin Dev. 2019;12:175–83; DOI:10.1016/j.omtm.2018.12.008.LuxCTPattabhiSBergerMNourigatCFlowersDANegreOHumbertOYangJGLeeCJacobyKBernsteinIKiemHPScharenbergARawlingsDJTALEN-mediated gene editing of hbg in human hematopoietic stem cells leads to therapeutic fetal hemoglobin inductionMol Ther - Methods Clin Dev2019121758310.1016/j.omtm.2018.12.008634898030705922Open DOISearch in Google Scholar

Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405; DOI:10.1016/j.tibtech.2013.04.004.GajTGersbachCABarbasCFZFN, TALEN, and CRISPR/Cas-based methods for genome engineeringTrends Biotechnol20133139740510.1016/j.tibtech.2013.04.004369460123664777Open DOISearch in Google Scholar

Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29:149–54; DOI:10.1038/nbt.1775.ZhangFCongLLodatoSKosuriSChurchGMArlottaPEfficient construction of sequence-specific TAL effectors for modulating mammalian transcriptionNat Biotechnol2011291495410.1038/nbt.1775308453321248753Open DOISearch in Google Scholar

Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–82; DOI:10.1534/genetics.111.131433.CarrollDGenome engineering with zinc-finger nucleasesGenetics20111887738210.1534/genetics.111.131433317609321828278Open DOISearch in Google Scholar

Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93:1156–60; DOI:10.1073/pnas.93.3.1156.KimYGChaJChandrasegaranSHybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domainProc Natl Acad Sci U S A19969311566010.1073/pnas.93.3.1156400488577732Open DOISearch in Google Scholar

Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, Dekelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27:851–7; DOI:10.1038/nbt.1562.HockemeyerDSoldnerFBeardCGaoQMitalipovaMDekelverRCKatibahGEAmoraRBoydstonEAZeitlerBMengXMillerJCZhangLRebarEJGregoryPDUrnovFDJaenischREfficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleasesNat Biotechnol200927851710.1038/nbt.1562414282419680244Open DOISearch in Google Scholar

Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012;109; DOI:10.1073/pnas.1208507109.GasiunasGBarrangouRHorvathPSiksnysVCas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteriaProc Natl Acad Sci U S A201210910.1073/pnas.1208507109346541422949671Open DOISearch in Google Scholar

Kim HS, Bernitz JM, Lee DF, Lemischka IR. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev. 2014;23:2673–86; DOI:10.1089/scd.2014.0167.KimHSBernitzJMLeeDFLemischkaIRGenomic editing tools to model human diseases with isogenic pluripotent stem cellsStem Cells Dev20142326738610.1089/scd.2014.0167421652825075441Open DOISearch in Google Scholar

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308; DOI:10.1038/nprot.2013.143.RanFAHsuPDWrightJAgarwalaVScottDAZhangFGenome engineering using the CRISPR-Cas9 systemNat Protoc20138228130810.1038/nprot.2013.143396986024157548Open DOISearch in Google Scholar

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21; DOI:10.1126/science.1225829.JinekMChylinskiKFonfaraIHauerMDoudnaJACharpentierEA programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunityScience20123378162110.1126/science.1225829628614822745249Open DOISearch in Google Scholar

Koziński K, Dobrzyń A. Szlak sygnałowy Wnt i jego rola w regulacji metabolizmu komórki. Postepy Hig Med Dosw. 2013;67:1098–108; DOI:10.5604/17322693.1077719.KozińskiKDobrzyńASzlak sygnałowy Wnt i jego rola w regulacji metabolizmu komórkiPostepy Hig Med Dosw201367109810810.5604/17322693.107771924379251Open DOISearch in Google Scholar

Abdelwahab EMM, Rapp J, Feller D, Csongei V, Pal S, Bartis D, Thickett DR, Pongracz JE. Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir Res. 2019;20; DOI:10.1186/s12931-019-1176-x.AbdelwahabEMMRappJFellerDCsongeiVPalSBartisDThickettDRPongraczJEWnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cellsRespir Res20192010.1186/s12931-019-1176-x673158731492143Open DOISearch in Google Scholar

Cai T, Sun D, Duan Y, Wen P, Dai C, Yang J, He W. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp Cell Res. 2016;345:206–17; DOI:10.1016/j.yexcr.2016.06.007.CaiTSunDDuanYWenPDaiCYangJHeWWNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expressionExp Cell Res20163452061710.1016/j.yexcr.2016.06.00727321958Open DOISearch in Google Scholar

Eswari S, Monisha M, Vijayarani K, Kumanan K, TANUVAS. Expression of early transcription factors by mesenchymal stem cells derived from ovine umbilical cord Wharton’s Jelly 2016.EswariSMonishaMVijayaraniKKumananKTANUVASExpression of early transcription factors by mesenchymal stem cells derived from ovine umbilical cord Wharton’s Jelly201610.56093/ijans.v86i10.62386Search in Google Scholar

Satheesan L, Soundian E, Kumanan V, Kathaperumal K. Potential of ovine Wharton jelly derived mesenchymal stem cells to transdifferentiate into neuronal phenotype for application in neuroregenerative therapy. Int J Neurosci. 2020;130:1101–8; DOI:10.1080/00207454.2020.1725510.SatheesanLSoundianEKumananVKathaperumalKPotential of ovine Wharton jelly derived mesenchymal stem cells to transdifferentiate into neuronal phenotype for application in neuroregenerative therapyInt J Neurosci20201301101810.1080/00207454.2020.172551032031459Open DOISearch in Google Scholar

Bhuvanalakshmi G, Arfuso F, Kumar AP, Dharmarajan A, Warrier S. Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Res Ther. 2017;8:185; DOI:10.1186/s13287-017-0638-7.BhuvanalakshmiGArfusoFKumarAPDharmarajanAWarrierSEpigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediatorsStem Cell Res Ther2017818510.1186/s13287-017-0638-7555755728807014Open DOISearch in Google Scholar

Simão VA, Evangelista-Ribeiro CP, Brand H, Lagass-Pereira L, Marques LF, Benites-Aoki PH, Nunes da Silveira-Antunes R, Tonso A, Ribeiro-Paes JT. Metabolic and proliferation evaluation of human adipose-derived mesenchymal stromal cells (ASC) in different culture medium volumes: standardization of static culture. Biologicals. 2019;62:93–101; DOI:10.1016/j.biologicals.2019.08.006.SimãoVAEvangelista-RibeiroCPBrandHLagass-PereiraLMarquesLFBenites-AokiPHNunesda Silveira-Antunes RTonsoARibeiro-PaesJT.Metabolic and proliferation evaluation of human adipose-derived mesenchymal stromal cells (ASC) in different culture medium volumes: standardization of static cultureBiologicals2019629310110.1016/j.biologicals.2019.08.00631495708Open DOISearch in Google Scholar

Pereira S, Pinto E, Ribeiro PA, Sério S. Study of a cold atmospheric pressure plasma jet device for indirect treatment of squamous cell carcinoma. Clin Plasma Med. 2019;13:9–14; DOI:10.1016/j.cpme.2018.09.001.PereiraSPintoERibeiroPASérioS.Study of a cold atmospheric pressure plasma jet device for indirect treatment of squamous cell carcinomaClin Plasma Med20191391410.1016/j.cpme.2018.09.001Open DOISearch in Google Scholar

Busco G, Omran AV, Ridou L, Pouvesle JM, Robert E, Grillon C. Cold atmospheric plasma-induced acidification of tissue surface: Visualization and quantification using agarose gel models. J Phys D Appl Phys. 2019;52:24LT01; DOI:10.1088/1361-6463/ab1119.BuscoGOmranAVRidouLPouvesleJMRobertEGrillonCCold atmospheric plasma-induced acidification of tissue surface: Visualization and quantification using agarose gel modelsJ Phys D Appl Phys20195224LT0110.1088/1361-6463/ab1119Open DOISearch in Google Scholar

Park J, Lee H, Lee HJ, Kim GC, Kim SS, Han S, Song K. Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells. Free Radic Biol Med. 2019;134:374–84; DOI:10.1016/j.freeradbiomed.2019.01.032.ParkJLeeHLeeHJKimGCKimSSHanSSongKNon-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cellsFree Radic Biol Med20191343748410.1016/j.freeradbiomed.2019.01.03230685405Open DOISearch in Google Scholar

Park J, Suh D, Tang T, Lee HJ, Roe JS, Kim GC, Han S, Song K. Non-thermal atmospheric pressure plasma induces epigenetic modifications that activate the expression of various cytokines and growth factors in human mesoderm-derived stem cells. Free Radic Biol Med. 2020;148:108–22; DOI:10.1016/j.freeradbiomed.2019.12.035.ParkJSuhDTangTLeeHJRoeJSKimGCHanSSongKNon-thermal atmospheric pressure plasma induces epigenetic modifications that activate the expression of various cytokines and growth factors in human mesoderm-derived stem cellsFree Radic Biol Med20201481082210.1016/j.freeradbiomed.2019.12.03531883975Open DOISearch in Google Scholar

Musunuru K. The hope and hype of CRISPR-Cas9 genome editing: A review. JAMA Cardiol. 2017;2:914–9; DOI:10.1001/jamacardio.2017.1713.MusunuruKThe hope and hype of CRISPR-Cas9 genome editing: A reviewJAMA Cardiol20172914910.1001/jamacardio.2017.171328614576Open DOISearch in Google Scholar

Hu X, Li L, Yu X, Zhang R, Yan S, Zeng Z, Shu Y, Zhao C, Wu X, Lei J, Li Y, Zhang W, Yang C, Wu K, Wu Y, An L, Huang S, Ji X, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Haydon RC, Luu HH, Reid RR, Lee MJ, Wolf JM, Yu Z, He TC. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget. 2017;8:111847–65; DOI:10.18632/oncotarget.22915.HuXLiLYuXZhangRYanSZengZShuYZhaoCWuXLeiJLiYZhangWYangCWuKWuYAnLHuangSJiXGongCYuanCZhangLLiuWHuangBFengYZhangBHaydonRCLuuHHReidRRLeeMJWolfJMYuZHeTCCRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs)Oncotarget201781118476510.18632/oncotarget.22915576236429340096Open DOISearch in Google Scholar

Kang JG, Park JS, Ko JH, Kim YS. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep. 2019;9; DOI:10.1038/s41598-019-48130-3.KangJGParkJSKoJHKimYSRegulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing systemSci Rep2019910.1038/s41598-019-48130-3670018131427598Open DOISearch in Google Scholar

Guo X, Tang Y, Zhang P, Li S, Chen Y, Qian B, Shen H, Zhao N. Effect of ectopic high expression of transcription factor OCT4 on the “stemness” characteristics of human bone marrow-derived mesenchymal stromal cells. Stem Cell Res Ther. 2019;10; DOI:10.1186/s13287-019-1263-4.GuoXTangYZhangPLiSChenYQianBShenHZhaoNEffect of ectopic high expression of transcription factor OCT4 on the “stemness” characteristics of human bone marrow-derived mesenchymal stromal cellsStem Cell Res Ther20191010.1186/s13287-019-1263-4654746531159871Open DOISearch in Google Scholar

Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, Clark KA, Sun B, Péault B, Huard J. Human muscle-derived stem/ progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest. 2014;124:1745–56; DOI:10.1172/JCI44071.LavasaniMThompsonSDPollettJBUsasALuAStolzDBClarkKASunBPéaultBHuardJHuman muscle-derived stem/ progenitor cells promote functional murine peripheral nerve regenerationJ Clin Invest201412417455610.1172/JCI44071397307624642464Open DOISearch in Google Scholar

Ishida O, Hagino I, Nagaya N, Shimizu T, Okano T, Sawa Y, Mori H, Yagihara T. Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failure. Transl Res. 2015;165:631–9; DOI:10.1016/j.trsl.2014.12.005.IshidaOHaginoINagayaNShimizuTOkanoTSawaYMoriHYagiharaTAdipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failureTransl Res2015165631910.1016/j.trsl.2014.12.00525613060Open DOISearch in Google Scholar

Kim MC, Kim YS, Kang WS, Lee KH, Cho M, Hong MH, Lim KS, Jeong MH, Ahn Y. Intramyocardial injection of stem cells in pig myocardial infarction model: The first trial in Korea. J Korean Med Sci. 2017;32:1708–12; DOI:10.3346/jkms.2017.32.10.1708.KimMCKimYSKangWSLeeKHChoMHongMHLimKSJeongMHAhnYIntramyocardial injection of stem cells in pig myocardial infarction model: The first trial in KoreaJ Korean Med Sci20173217081210.3346/jkms.2017.32.10.1708559218828875618Open DOISearch in Google Scholar

Haenel A, Ghosn M, Karimi T, Vykoukal J, Shah D, Valderrabano M, Schulz DG, Raizner A, Schmitz C, Alt EU. Unmodified autologous stem cells at point of care for chronic myocardial infarction. World J Stem Cells. 2019;11:831–58; DOI:10.4252/wjsc.v11.i10.831.HaenelAGhosnMKarimiTVykoukalJShahDValderrabanoMSchulzDGRaiznerASchmitzCAltEUUnmodified autologous stem cells at point of care for chronic myocardial infarctionWorld J Stem Cells2019118315810.4252/wjsc.v11.i10.831682859731692971Open DOISearch in Google Scholar

Chang HK, Kim PH, Kim DW, Cho HM, Jeong MJ, Kim DH, Joung YK, Lim KS, Kim HB, Lim HC, Han DK, Hong YJ, Cho JY. Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model. Exp Mol Med. 2018;50; DOI:10.1038/s12276-018-0143-9.ChangHKKimPHKimDWChoHMJeongMJKimDHJoungYKLimKSKimHBLimHCHanDKHongYJChoJYCoronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine modelExp Mol Med20185010.1038/s12276-018-0143-9611968430174328Open DOISearch in Google Scholar

Tao H, Chen X, Cao H, Zheng L, Li Q, Zhang K, Han Z, Han ZC, Guo Z, Li Z, Wang L. Mesenchymal stem cell-derived extracellular vesicles for corneal wound repair. Stem Cells Int. 2019;2019; DOI:10.1155/2019/5738510.TaoHChenXCaoHZhengLLiQZhangKHanZHanZCGuoZLiZWangLMesenchymal stem cell-derived extracellular vesicles for corneal wound repairStem Cells Int2019201910.1155/2019/5738510692577231885617Open DOISearch in Google Scholar

Zhou Y, Chen Y, Wang S, Qin F, Wang L. MSCs helped reduce scarring in the cornea after fungal infection when combined with anti-fungal treatment. BMC Ophthalmol. 2019;19; DOI:10.1186/s12886-019-1235-6.ZhouYChenYWangSQinFWangLMSCs helped reduce scarring in the cornea after fungal infection when combined with anti-fungal treatmentBMC Ophthalmol20191910.1186/s12886-019-1235-6Open DOISearch in Google Scholar

Amini-Nik S, Dolp R, Eylert G, Datu AK, Parousis A, Blakeley C, Jeschke MG. Stem cells derived from burned skin - The future of burn care. EBioMedicine. 2018;37:509–20; DOI:10.1016/j.ebiom.2018.10.014.Amini-NikSDolpREylertGDatuAKParousisABlakeleyCJeschkeMG.Stem cells derived from burned skin - The future of burn careEBioMedicine2018375092010.1016/j.ebiom.2018.10.014Open DOISearch in Google Scholar

Boltze J, Abe K, Clarkson AN, Detante O, Pimentel-Coelho PM, Rosado-de-Castro PH, Janowski M. Editorial: Cell-based therapies for stroke: promising solution or dead end? Front Neurol. 2020;11; DOI:10.3389/fneur.2020.00171.BoltzeJAbeKClarksonANDetanteOPimentel-CoelhoPMRosado-de-CastroPHJanowskiMEditorial: Cell-based therapies for stroke: promising solution or dead end?Front Neurol20201110.3389/fneur.2020.00171Open DOISearch in Google Scholar

Levy ML, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke. 2019;50:2835–41; DOI:10.1161/STROKEAHA.119.026318.LevyMLCrawfordJRDibNVerkhLTankovichNCramerSCPhase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic strokeStroke20195028354110.1161/STROKEAHA.119.026318Open DOISearch in Google Scholar

Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, McConnachie A, Santosh C, Bath PM, Dunn L, Muir KW. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016;388:787–96; DOI:10.1016/S0140-6736(16)30513-X.KalladkaDSindenJPollockKHaigCMcLeanJSmithWMcConnachieASantoshCBathPMDunnLMuirKWHuman neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man studyLancet20163887879610.1016/S0140-6736(16)30513-XOpen DOISearch in Google Scholar

Muir KW, Bulters D, Willmot M, Sprigg N, Dixit A, Ward N, Tyrrell P, Majid A, Dunn L, Bath P, Howell J, Stroemer P, Pollock K, Sinden J. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2). J Neurol Neurosurg Psychiatry. 2020;91; DOI:10.1136/jnnp-2019-322515.MuirKWBultersDWillmotMSpriggNDixitAWardNTyrrellPMajidADunnLBathPHowellJStroemerPPollockKSindenJIntracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2)J Neurol Neurosurg Psychiatry20209110.1136/jnnp-2019-322515714718632041820Open DOISearch in Google Scholar

Duma C, Kopyov O, Kopyov A, Berman M, Lander E, Elam M, Arata M, Weiland D, Cannell R, Caraway C, Berman S, Scord K, Stemler L, Chung K, Khoudari S, McRory R, Duma C, Farmer S, Bravo A, Yassa C, Sanathara A, Singh E, Rapaport B. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Mol Biol Rep. 2019;46:5257–72; DOI:10.1007/s11033-019-04983-5.DumaCKopyovOKopyovABermanMLanderEElamMArataMWeilandDCannellRCarawayCBermanSScordKStemlerLChungKKhoudariSMcRoryRDumaCFarmerSBravoAYassaCSanatharaASinghERapaportBHuman intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patientsMol Biol Rep20194652577210.1007/s11033-019-04983-531327120Open DOISearch in Google Scholar

Berry JD, Cudkowicz ME, Windebank AJ, Staff NP, Owegi M, Nicholson K, McKenna-Yasek D, Levy YS, Abramov N, Kaspi H, Mehra M, Aricha R, Gothelf Y, Brown RH. NurOwn, phase 2, randomized, clinical trial in patients with ALS: Safety, clinical, and biomarker results. Neurology. 2019;93:E2294–305; DOI:10.1212/WNL.0000000000008620.BerryJDCudkowiczMEWindebankAJStaffNPOwegiMNicholsonKMcKenna-YasekDLevyYSAbramovNKaspiHMehraMArichaRGothelfYBrownRHNurOwn, phase 2, randomized, clinical trial in patients with ALS: Safety, clinical, and biomarker resultsNeurology201993E229430510.1212/WNL.0000000000008620693749731740545Open DOISearch in Google Scholar

Singer W, Dietz AB, Zeller AD, Gehrking TL, Schmelzer JD, Schmeichel AM, Gehrking JA, Suarez MD, Sletten DM, Minota Pacheco K V., Coon EA, Sandroni P, Benarroch EE, Fealey RD, Matsumoto JY, Bower JH, Hassan A, Mckeon A, Windebank AJ, Mandrekar JN, Low PA. Intrathecal administration of autologous mesenchymal stem cells in multiple system atrophy. Neurology. 2019;93:E77–87; DOI:10.1212/WNL.0000000000007720.SingerWDietzABZellerADGehrkingTLSchmelzerJDSchmeichelAMGehrkingJASuarezMDSlettenDMMinotaPacheco K V.CoonEASandroniPBenarrochEEFealeyRDMatsumotoJYBowerJHHassanAMckeonAWindebankAJMandrekarJNLowPA.Intrathecal administration of autologous mesenchymal stem cells in multiple system atrophyNeurology201993E778710.1212/WNL.0000000000007720665900331152011Open DOISearch in Google Scholar

Levi AD, Okonkwo DO, Park P, Jenkins AL, Kurpad SN, Parr AM, Ganju A, Aarabi B, Kim D, Casha S, Fehlings MG, Harrop JS, Anderson KD, Gage A, Hsieh J, Huhn S, Curt A, Guzman R. Emerging safety of intramedullary transplantation of human neural stem cells in chronic cervical and thoracic spinal cord injury. Clin Neurosurg. 2018;82:562–75; DOI:10.1093/neuros/nyx250.LeviADOkonkwoDOParkPJenkinsALKurpadSNParrAMGanjuAAarabiBKimDCashaSFehlingsMGHarropJSAndersonKDGageAHsiehJHuhnSCurtAGuzmanREmerging safety of intramedullary transplantation of human neural stem cells in chronic cervical and thoracic spinal cord injuryClin Neurosurg2018825627510.1093/neuros/nyx25028541431Open DOISearch in Google Scholar

Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell. 2018;22:941-950.e6; DOI:10.1016/j.stem.2018.05.014.CurtisEMartinJRGabelBSidhuNRzesiewiczTKMandevilleRVanGorp SLeerinkMTadokoroTMarsalaSJamiesonCMarsalaMCiacciJD.A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord InjuryCell Stem Cell201822941950e610.1016/j.stem.2018.05.014Open DOISearch in Google Scholar

Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, Chen B, Han S, Jiang X, Yun C, Zhao C, Cheng S, Zhang S, Dai J. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with neuroregen scaffolds and mesenchymal stem cells. Cell Transplant. 2018;27:907–15; DOI:10.1177/0963689718766279.XiaoZTangFZhaoYHanGYinNLiXChenBHanSJiangXYunCZhaoCChengSZhangSDaiJSignificant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with neuroregen scaffolds and mesenchymal stem cellsCell Transplant2018279071510.1177/0963689718766279Open DOISearch in Google Scholar

Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367:1747–57; DOI:10.1016/S0140-6736(06)68770-9.LopezADMathersCDEzzatiMJamisonDTMurrayCJGlobal and regional burden of disease and risk factors, 2001 systematic analysis of population health dataLancet200636717475710.1016/S0140-6736(06)68770-9Open DOISearch in Google Scholar

Qi Z, Liu S, Duan F. Effects of bone marrow mononuclear cells delivered through a graft vessel in patients with previous myocardial infarction and chronic heart failure: An echocardiographic study of left ventricular dyssynchrony. J Clin Ultrasound. 2018;46:512–8; DOI:10.1002/jcu.22609.QiZLiuSDuanFEffects of bone marrow mononuclear cells delivered through a graft vessel in patients with previous myocardial infarction and chronic heart failure: An echocardiographic study of left ventricular dyssynchronyJ Clin Ultrasound201846512810.1002/jcu.2260930160313Open DOISearch in Google Scholar

Kim SH, Cho JH, Lee YH, Lee JH, Kim SS, Kim MY, Lee MG, Kang WY, Lee KS, Ahn YK, Jeong MH, Kim HS. Improvement in left ventricular function with intracoronary mesenchymal stem cell therapy in a patient with anterior wall st-segment elevation myocardial infarction. Cardiovasc Drugs Ther. 2018;32:329–38; DOI:10.1007/s10557-018-6804-z.KimSHChoJHLeeYHLeeJHKimSSKimMYLeeMGKangWYLeeKSAhnYKJeongMHKimHSImprovement in left ventricular function with intracoronary mesenchymal stem cell therapy in a patient with anterior wall st-segment elevation myocardial infarctionCardiovasc Drugs Ther2018323293810.1007/s10557-018-6804-z613316729956042Open DOISearch in Google Scholar

Fernández-Avilés F, Sanz-Ruiz R, Bogaert J, Plasencia AC, Gilaberte I, Belmans A, Fernández-Santos ME, Charron D, Mulet M, Yotti R, Palacios I, Luque M, Sádaba R, Román JAS, Larman M, Sánchez PL, Sanchís J, Jiménez MF, Claus P, Al-Daccak R, Lombardo E, Abad JL, Delarosa O, Corcóstegui L, Bermejo J, Janssens S. Safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with st-segment elevation myocardial infarction and left ventricular dysfunction a multicenter randomized, double-blind, and placebo-controlled clinical trial. Circ Res. 2018;123:579–89; DOI:10.1161/CIRCRESAHA.118.312823.Fernández-AvilésFSanz-RuizRBogaertJPlasenciaACGilaberteIBelmansAFernández-SantosMECharronDMuletMYottiRPalaciosILuqueMSádabaRRománJASLarmanMSánchezPLSanchísJJiménezMFClausPAl-DaccakRLombardoEAbadJLDelarosaOCorcósteguiLBermejoJJanssensS.Safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with st-segment elevation myocardial infarction and left ventricular dysfunction a multicenter randomized, double-blind, and placebo-controlled clinical trialCirc Res20181235798910.1161/CIRCRESAHA.118.31282329921651Open DOISearch in Google Scholar

Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I, Lamich R, Pedreros PA, Valdivia G, Lopez VM, Nazzal C, Alcayaga-Miranda F, Cuenca J, Brobeck MJ, Patel AN, Figueroa FE, Khoury M. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD trial [Randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res. 2017;121:1192–204; DOI:10.1161/CIRCRESAHA.117.310712.BartolucciJVerdugoFJGonzálezPLLarreaREAbarzuaEGosetCRojoPPalmaILamichRPedrerosPAValdiviaGLopezVMNazzalCAlcayaga-MirandaFCuencaJBrobeckMJPatelANFigueroaFEKhouryMSafety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD trial [Randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy])Circ Res2017121119220410.1161/CIRCRESAHA.117.310712637205328974553Open DOISearch in Google Scholar

Bolli R, Hare JM, March KL, Pepine CJ, Willerson JT, Perin EC, Yang PC, Henry TD, Traverse JH, Mitrani RD, Khan A, Hernandez-Schulman I, Taylor DA, DiFede DL, Lima JAC, Chugh A, Loughran J, Vojvodic RW, Sayre SL, Bettencourt J, Cohen M, Moyé L, Ebert RF, Simari RD. Rationale and design of the CONCERT-HF trial (combination of mesenchymal and c-kit + cardiac stem cells as regenerative therapy for heart failure). Circ Res. 2018;122:1703–15; DOI:10.1161/CIRCRESAHA.118.312978.BolliRHareJMMarchKLPepineCJWillersonJTPerinECYangPCHenryTDTraverseJHMitraniRDKhanAHernandez-SchulmanITaylorDADiFedeDLLimaJACChughALoughranJVojvodicRWSayreSLBettencourtJCohenMMoyéLEbertRFSimariRD.Rationale and design of the CONCERT-HF trial (combination of mesenchymal and c-kit + cardiac stem cells as regenerative therapy for heart failure)Circ Res201812217031510.1161/CIRCRESAHA.118.312978599362229703749Open DOISearch in Google Scholar

Lee WS, Kim HJ, Kim K Il, Kim GB, Jin W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase iib, randomized, placebo-controlled clinical trial. Stem Cells Transl Med. 2019;8:504–11; DOI:10.1002/sctm.18-0122.LeeWSKimHJKimK IlKimGBJinW.Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase iib, randomized, placebo-controlled clinical trialStem Cells Transl Med201985041110.1002/sctm.18-0122652555330835956Open DOISearch in Google Scholar

Song Y, Du H, Dai C, Zhang L, Li S, Hunter DJ, Lu L, Bao C. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen Med. 2018;13:295–307; DOI:10.2217/rme-2017-0152.SongYDuHDaiCZhangLLiSHunterDJLuLBaoCHuman adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injectionsRegen Med20181329530710.2217/rme-2017-015229417902Open DOISearch in Google Scholar

Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Nuñez-Córdoba JM, Sánchez-Echenique C, Bondía JM, Aquerreta JD, Andreu EJ, Ornilla E, Villarón EM, Valentí-Azcárate A, Sánchez-Guijo F, Cañizo MC, Valentí--Nin JR, Prósper F. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Multicenter randomized controlled clinical trial (phase I/II). J Transl Med. 2016;14; DOI:10.1186/s12967-016-0998-2.Lamo-EspinosaJMMoraGBlancoJFGranero-MoltóFNuñez-CórdobaJMSánchez-EcheniqueCBondíaJMAquerretaJDAndreuEJOrnillaEVillarónEMValentí-AzcárateASánchez-GuijoFCañizoMCValentí--NinJRPrósperF.Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Multicenter randomized controlled clinical trial (phase I/II)J Transl Med20161410.1186/s12967-016-0998-2500215727565858Open DOISearch in Google Scholar

Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Núñez-Córdoba JM, López-Elío S, Andreu E, Sánchez-Guijo F, Aquerreta JD, Bondía JM, Valentí-Azcárate A, Consuelo del Cañizo M, Villarón EM, Valentí-Nin JR, Prósper F. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Long-term follow up of a multicenter randomized controlled clinical trial (phase I/ II). J Transl Med. 2018;16; DOI:10.1186/s12967-018-1591-7.Lamo-EspinosaJMMoraGBlancoJFGranero-MoltóFNúñez-CórdobaJMLópez-ElíoSAndreuESánchez-GuijoFAquerretaJDBondíaJMValentí-AzcárateAConsuelodel Cañizo MVillarónEMValentí-NinJRPrósperF.Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Long-term follow up of a multicenter randomized controlled clinical trial (phase I/ II)J Transl Med20181610.1186/s12967-018-1591-7606971530064455Open DOISearch in Google Scholar

Park Y-B, Ha C-W, Lee C-H, Yoon YC, Park Y-G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med. 2017;6:613–21; DOI:10.5966/sctm.2016-0157.ParkY-BHaC-WLeeC-HYoonYCParkY-GCartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-upStem Cells Transl Med201766132110.5966/sctm.2016-0157544280928191757Open DOISearch in Google Scholar

Garay-Mendoza D, Villarreal-Martínez L, Garza-Bedolla A, Pérez-Garza DM, Acosta-Olivo C, Vilchez-Cavazos F, Diaz-Hutchinson C, Gómez-Almaguer D, Jaime-Pérez JC, Mancías-Guerra C. The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. Int J Rheum Dis. 2018;21:140–7; DOI:10.1111/1756-185X.13139.Garay-MendozaDVillarreal-MartínezLGarza-BedollaAPérez-GarzaDMAcosta-OlivoCVilchez-CavazosFDiaz-HutchinsonCGómez-AlmaguerDJaime-PérezJCMancías-GuerraC.The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritisInt J Rheum Dis201821140710.1111/1756-185X.1313928752679Open DOISearch in Google Scholar

Carlsson PO, Schwarcz E, Korsgren O, Le Blanc K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015;64:587–92; DOI:10.2337/db14-0656.CarlssonPOSchwarczEKorsgrenOLeBlanc K.Preserved β-cell function in type 1 diabetes by mesenchymal stromal cellsDiabetes2015645879210.2337/db14-065625204974Open DOISearch in Google Scholar

Bhansali S, Dutta P, Kumar V, Yadav MK, Jain A, Mudaliar S, Bhansali S, Sharma RR, Jha V, Marwaha N, Khandelwal N, Srinivasan A, Sachdeva N, Hawkins M, Bhansali A. Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem Cells Dev. 2017;26:471–81; DOI:10.1089/scd.2016.0275.BhansaliSDuttaPKumarVYadavMKJainAMudaliarSBhansaliSSharmaRRJhaVMarwahaNKhandelwalNSrinivasanASachdevaNHawkinsMBhansaliAEfficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative studyStem Cells Dev2017264718110.1089/scd.2016.027528006991Open DOISearch in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry