Zacytuj

Błocińska R. Folikulogeneza i steroidogeneza jajnikowa u świń. Zesz Nauk Tow Doktorantów Uniw Jagiellońskiego. 2010.BłocińskaRFolikulogeneza i steroidogeneza jajnikowa u świń. Zesz Nauk Tow Doktorantów Uniw Jagiellońskiego2010Search in Google Scholar

MATSUDA F, INOUE N, MANABE N, OHKURA S. Follicular Growth and Atresia in Mammalian Ovaries: Regulation by Survival and Death of Granulosa Cells. J Reprod Dev. 2012;58:44–50; DOI:10.1262/jrd.2011-012.2245028410.1262/jrd.2011-012MATSUDAFINOUENMANABENOHKURASFollicular Growth and Atresia in Mammalian Ovaries: Regulation by Survival and Death of Granulosa CellsJ Reprod Dev201258445010.1262/jrd.2011-01222450284Search in Google Scholar

Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996; DOI:10.1210/er.17.2.121.8706629GougeonARegulation of ovarian follicular development in primates: facts and hypothesesEndocr Rev199610.1210/er.17.2.121Search in Google Scholar

Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99:979–97; DOI:10.1016/j.fertnstert.2013.01.129.10.1016/j.fertnstert.2013.01.12923498999UyarATorrealdaySSeliECumulus and granulosa cell markers of oocyte and embryo qualityFertil Steril2013999799710.1016/j.fertnstert.2013.01.129386613123498999Open DOISearch in Google Scholar

Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77; DOI:10.1093/humupd/dmm040.10.1093/humupd/dmm04018175787GilchristRBLaneMThompsonJGOocyte-secreted factors: regulators of cumulus cell function and oocyte qualityHum Reprod Update2008141597710.1093/humupd/dmm04018175787Open DOISearch in Google Scholar

Hamel M, Dufort I, Robert C, Leveille M-C, Leader A, Sirard M-A. Genomic assessment of follicular marker genes as pregnancy predictors for human IVF. Mol Hum Reprod. 2010;16:87–96; DOI:10.1093/molehr/gap079.1977894910.1093/molehr/gap079HamelMDufortIRobertCLeveilleM-CLeaderASirardM-AGenomic assessment of follicular marker genes as pregnancy predictors for human IVFMol Hum Reprod201016879610.1093/molehr/gap07919778949Search in Google Scholar

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27:210–9; DOI:10.1634/stemcells.2008-0233.10.1634/stemcells.2008-023319224509Kossowska-TomaszczukKDeGeyter CDeGeyter MMartinIHolzgreveWScherberichAZhangHThe Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian FolliclesStem Cells200927210910.1634/stemcells.2008-023319224509Open DOISearch in Google Scholar

Mattioli M, Gloria A, Turriani M, Berardinelli P, Russo V, Nardinocchi D, Curini V, Baratta M, Martignani E, Barboni B. Osteo-regenerative potential of ovarian granulosa cells: An in vitro and in vivo study. Theriogenology. 2012;77:1425–37; DOI:10.1016/j.theriogenology.2011.11.008.10.1016/j.theriogenology.2011.11.008MattioliMGloriaATurrianiMBerardinelliPRussoVNardinocchiDCuriniVBarattaMMartignaniEBarboniBOsteo-regenerative potential of ovarian granulosa cells: An in vitro and in vivo studyTheriogenology20127714253710.1016/j.theriogenology.2011.11.00822284224Open DOISearch in Google Scholar

Doğan A. Embryonic Stem Cells in Development and Regenerative Medicine, Springer, Cham; 2018;1–15; DOI:10.1007/5584_2018_175.DoğanA.Embryonic Stem Cells in Development and Regenerative MedicineSpringer, Cham201811510.1007/5584_2018_17529464659Open DOISearch in Google Scholar

Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30:1255–61; DOI:10.1007/s10815-013-0068-0.2389326610.1007/s10815-013-0068-0DzaficEStimpfelMVirant-KlunIPlasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potentialJ Assist Reprod Genet20133012556110.1007/s10815-013-0068-0382486223893266Search in Google Scholar

Raff MC. Surface antigenic markers for distinguishing T and B lymphocytes in mice. Transplant Rev. 1971;6:52–80; DOI:10.1111/j.1600-065x.1971.tb00459.x.RaffMCSurface antigenic markers for distinguishing T and B lymphocytes in miceTransplant Rev19716528010.1111/j.1600-065x.1971.tb00459.x4108877Open DOISearch in Google Scholar

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F., Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7; DOI:10.1080/14653240600855905.1692360610.1080/14653240600855905DominiciMLeBlanc KMuellerISlaper-CortenbachIMariniF.KrauseDSDeansRJKeatingAProckopDJHorwitzEMMinimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statementCytotherapy20068315710.1080/14653240600855905Search in Google Scholar

Dzafic E, Stimpfel M, Novakovic S, Cerkovnik P, Virant-Klun I. Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. Biomed Res Int. 2014;2014:508216; DOI:10.1155/2014/508216.24724084DzaficEStimpfelMNovakovicSCerkovnikPVirant-KlunIExpression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile womenBiomed Res Int2014201450821610.1155/2014/508216Search in Google Scholar

Bukovský A, Caudle MR, Keenan JA, Wimalasena J, Foster JS, Van Meter SE. Quantitative Evaluation of the Cell Cycle-Related Retinoblastoma Protein and Localization of Thy-1 Differentiation Protein and Macrophages during Follicular Development and Atresia, and in Human Corpora Lutea1. Biol Reprod. 1995;52:776–92; DOI:10.1095/biolreprod52.4.776.778000010.1095/biolreprod52.4.776BukovskýACaudleMRKeenanJAWimalasenaJFosterJSVanMeter SEQuantitative Evaluation of the Cell Cycle-Related Retinoblastoma Protein and Localization of Thy-1 Differentiation Protein and Macrophages during Follicular Development and Atresia, and in Human Corpora Lutea1Biol Reprod1995527769210.1095/biolreprod52.4.776Search in Google Scholar

Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978;253:2769–76.632300RinderknechtEHumbelREThe amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulinJ Biol Chem197825327697610.1016/S0021-9258(17)40889-1Search in Google Scholar

Mathews LS, Norstedt G, Palmiter RD. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc Natl Acad Sci. 1986;83:9343–7; DOI:10.1073/pnas.83.24.9343.10.1073/pnas.83.24.9343MathewsLSNorstedtGPalmiterRDRegulation of insulin-like growth factor I gene expression by growth hormoneProc Natl Acad Sci1986839343710.1073/pnas.83.24.93433871343467309Open DOISearch in Google Scholar

Rotwein P. Two insulin-like growth factor I messenger RNAs are expressed in human liver. Proc Natl Acad Sci U S A. 1986;83:77–81; DOI:10.1073/pnas.83.1.77.345576010.1073/pnas.83.1.77RotweinPTwo insulin-like growth factor I messenger RNAs are expressed in human liverProc Natl Acad Sci U S A198683778110.1073/pnas.83.1.773227943455760Search in Google Scholar

Oliver Je, Aitman Tj, Powell Jf, Wilson Ca, Clayton Rn. Insulin-Like Growth Factor I Gene Expression in the Rat Ovary is Confined to the Granulosa Cells of Developing Follicles. Endocrinology. 1989;124:2671–9; DOI:10.1210/endo-124-6-2671.272144110.1210/endo-124-6-2671OliverJeAitmanTjPowellJfWilsonCaClaytonRnInsulin-Like Growth Factor I Gene Expression in the Rat Ovary is Confined to the Granulosa Cells of Developing FolliclesEndocrinology19891242671910.1210/endo-124-6-26712721441Search in Google Scholar

Adashi EY, Resnick CE, Payne DW, Rosenfeld RG, Matsumoto T, Hunter MK, Gargosky SE, Zhou J, Bondy CA. The Mouse Intraovarian Insulin-Like Growth Factor I System: Departures from the Rat Paradigm*. Endocrinology. 1997;138:3881–90; DOI:10.1210/endo.138.9.5363.10.1210/endo.138.9.53639275078AdashiEYResnickCEPayneDWRosenfeldRGMatsumotoTHunterMKGargoskySEZhouJBondyCAThe Mouse Intraovarian Insulin-Like Growth Factor I System: Departures from the Rat Paradigm*Endocrinology199713838819010.1210/endo.138.9.53639275078Open DOISearch in Google Scholar

Zhou J, Refuerzo J, Bondy C. Granulosa cell DNA synthesis is strictly correlated with the presence of insulin-like growth factor I and absence of c-fos/c-jun expression. Mol Endocrinol. 1995;9:924–31; DOI:10.1210/mend.9.7.7476974.7476974ZhouJRefuerzoJBondyCGranulosa cell DNA synthesis is strictly correlated with the presence of insulin-like growth factor I and absence of c-fos/c-jun expressionMol Endocrinol199599243110.1210/mend.9.7.74769747476974Search in Google Scholar

Kadakia R, Arraztoa JA, Bondy C, Zhou J. Granulosa cell proliferation is impaired in the Igf1 null ovary. Growth Horm IGF Res. 2001;11:220–4; DOI:10.1054/ghir.2001.0201.10.1054/ghir.2001.020111735237KadakiaRArraztoaJABondyCZhouJGranulosa cell proliferation is impaired in the Igf1 null ovaryGrowth Horm IGF Res200111220410.1054/ghir.2001.020111735237Open DOISearch in Google Scholar

Ogo Y, Taniuchi S, Ojima F, Hayashi S, Murakami I, Saito Y, Takeuchi S, Kudo T, Takahashi S. IGF-1 gene expression is differentially regulated by estrogen receptors α and β in mouse endometrial stromal cells and ovarian granulosa cells. J Reprod Dev. 2014;60:216–23; DOI:10.1262/jrd.2013-085.2467077810.1262/jrd.2013-085OgoYTaniuchiSOjimaFHayashiSMurakamiISaitoYTakeuchiSKudoTTakahashiSIGF-1 gene expression is differentially regulated by estrogen receptors α and β in mouse endometrial stromal cells and ovarian granulosa cellsJ Reprod Dev2014602162310.1262/jrd.2013-085Search in Google Scholar

Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61:1303–13; DOI:10.1016/0092-8674(90)90694-a.169472310.1016/0092-8674(90)90694-AAruffoAStamenkovicIMelnickMUnderhillCBSeedBCD44 is the principal cell surface receptor for hyaluronateCell19906113031310.1016/0092-8674(90)90694-aSearch in Google Scholar

Ohta N, Saito H, Kuzumaki T, Takahashi T, Ito MM, Saito T, Nakahara K, Hiroi M. Expression of CD44 in human cumulus and mural granulosa cells of individual patients in in-vitro fertilization programmes. Mol Hum Reprod. 1999;5:22–8; DOI:10.1093/molehr/5.1.22.1005065810.1093/molehr/5.1.22OhtaNSaitoHKuzumakiTTakahashiTItoMMSaitoTNakaharaKHiroiMExpression of CD44 in human cumulus and mural granulosa cells of individual patients in in-vitro fertilization programmesMol Hum Reprod1999522810.1093/molehr/5.1.2210050658Search in Google Scholar

Kaneko T, Saito H, Toya M, Satio T, Nakahara K, Hiroi M. Hyaluronic acid inhibits apoptosis in granulosa cells via CD44. J Assist Reprod Genet. 2000;17:162–7; DOI:10.1023/a:1009470206468.1091157710.1023/A:1009470206468KanekoTSaitoHToyaMSatioTNakaharaKHiroiMHyaluronic acid inhibits apoptosis in granulosa cells via CD44J Assist Reprod Genet200017162710.1023/a:1009470206468Search in Google Scholar

Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-Ligand Interaction Between CD44 and Osteopontin (Eta-1). Science. 1996;271:509–12; DOI:10.1126/science.271.5248.509.856026610.1126/science.271.5248.509WeberGFAshkarSGlimcherMJCantorHReceptor-Ligand Interaction Between CD44 and Osteopontin (Eta-1)Science19962715091210.1126/science.271.5248.5098560266Search in Google Scholar

Tunjung WAS, Yokoo M, Hoshino Y, Miyake Y, Kadowaki A, Sato E. Effect of hyaluronan to inhibit caspase activation in porcine granulosa cells. Biochem Biophys Res Commun. 2009;382:160–4; DOI:10.1016/j.bbrc.2009.02.163.1926865310.1016/j.bbrc.2009.02.163TunjungWASYokooMHoshinoYMiyakeYKadowakiASatoEEffect of hyaluronan to inhibit caspase activation in porcine granulosa cellsBiochem Biophys Res Commun2009382160410.1016/j.bbrc.2009.02.16319268653Search in Google Scholar

Chavoshinejad R, Marei WFA, Hartshorne GM, Fouladi-Nashta AA. Localisation and endocrine control of hyaluronan synthase (HAS) 2, HAS3 and CD44 expression in sheep granulosa cells. Reprod Fertil Dev. 2016;28:765; DOI:10.1071/RD14294.10.1071/RD1429425427133ChavoshinejadRMareiWFAHartshorneGMFouladi-NashtaAALocalisation and endocrine control of hyaluronan synthase (HAS) 2, HAS3 and CD44 expression in sheep granulosa cellsReprod Fertil Dev20162876510.1071/RD1429425427133Open DOISearch in Google Scholar

Ríus C, Smith JD, Almendro N, Langa C, Botella LM, Marchuk DA, Vary CP, Bernabéu C. Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood. 1998;92:4677–90.984553410.1182/blood.V92.12.4677RíusCSmithJDAlmendroNLangaCBotellaLMMarchukDAVaryCPBernabéuCCloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1Blood199892467790Search in Google Scholar

Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP. Defective Angiogenesis in Mice Lacking Endoglin. Science. 1999;284:1534–7; DOI:10.1126/science.284.5419.1534.1034874210.1126/science.284.5419.1534LiDYSorensenLKBrookeBSUrnessLDDavisECTaylorDGBoakBBWendelDPDefective Angiogenesis in Mice Lacking EndoglinScience19992841534710.1126/science.284.5419.153410348742Search in Google Scholar

Ai A, Tang Z, Liu Y, Yu S, Li B, Huang H, Wang X, Cao Y, Zhang W. Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp Ther Med. 2019;18:2167–77; DOI:10.3892/etm.2019.7802.31452708AiATangZLiuYYuSLiBHuangHWangXCaoYZhangWCharacterization and identification of human immortalized granulosa cells derived from ovarian follicular fluidExp Ther Med20191821677710.3892/etm.2019.7802670493431452708Search in Google Scholar

Basini G, Falasconi I, Bussolati S, Grolli S, Di Lecce R, Grasselli F. Swine Granulosa Cells Show Typical Endothelial Cell Characteristics. Reprod Sci. 2016; DOI:10.1177/1933719115612130.26494700BasiniGFalasconiIBussolatiSGrolliSDiLecce RGrasselliFSwine Granulosa Cells Show Typical Endothelial Cell CharacteristicsReprod Sci201610.1177/1933719115612130Search in Google Scholar

Bamberger A-M, Jenatschke S, Schulte HM, Löning T, Bamberger CM. Leukemia Inhibitory Factor (LIF) Stimulates the Human HLA-G Promoter in JEG3 Choriocarcinoma Cells. J Clin Endocrinol Metab. 2000;85:3932–6; DOI:10.1210/jcem.85.10.6849.10.1210/jcem.85.10.684911061559BambergerA-MJenatschkeSSchulteHMLöningTBambergerCMLeukemia Inhibitory Factor (LIF) Stimulates the Human HLA-G Promoter in JEG3 Choriocarcinoma CellsJ Clin Endocrinol Metab2000853932610.1210/jcem.85.10.6849Open DOISearch in Google Scholar

Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–22; DOI:10.1038/nature08113.10.1038/nature0811319571885NiwaHOgawaKShimosatoDAdachiKA parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cellsNature20094601182210.1038/nature08113Open DOISearch in Google Scholar

Kubota Y, Hirashima M, Kishi K, Stewart CL, Suda T. Leukemia inhibitory factor regulates microvessel density by modulating oxygen-dependent VEGF expression in mice. J Clin Invest. 2008;118:2393–403; DOI:10.1172/JCI34882.18521186KubotaYHirashimaMKishiKStewartCLSudaTLeukemia inhibitory factor regulates microvessel density by modulating oxygen-dependent VEGF expression in miceJ Clin Invest2008118239340310.1172/JCI34882Search in Google Scholar

Abir R, Fisch B, Jin S, Barnnet M, Freimann S, Van den Hurk R, Feldberg D, Nitke S, Krissi H, Ao A. Immunocytochemical detection and RT-PCR expression of leukaemia inhibitory factor and its receptor in human fetal and adult ovaries. Mol Hum Reprod. 2004;10:313–9; DOI:10.1093/molehr/gah047.1504460110.1093/molehr/gah047AbirRFischBJinSBarnnetMFreimannSVanden Hurk RFeldbergDNitkeSKrissiHAoAImmunocytochemical detection and RT-PCR expression of leukaemia inhibitory factor and its receptor in human fetal and adult ovariesMol Hum Reprod200410313910.1093/molehr/gah047Search in Google Scholar

Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol. 2002;188:65–73; DOI:10.1016/S0303-7207(01)00746-8.10.1016/S0303-7207(01)00746-811911947NilssonEEKezelePSkinnerMKLeukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovariesMol Cell Endocrinol2002188657310.1016/S0303-7207(01)00746-8Open DOISearch in Google Scholar

eISSN:
2544-3577
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry