Zacytuj

1. Abdelwahed S, Saadouli I, Kouidhi S, Masmoudi AS, Cherif A, Mnif W, Mosbah, A (2022). A new pioneer colorimetric micro-plate method for the estimation of ammonia production by plant growth promoting rhizobacteria (PGPR). Main Group Chemistry 21(1):55-68. DOI: 10.3233/MGC-210077.10.3233/MGC-210077 Search in Google Scholar

2. Adnan N, Nordin SM, Anwar A (2020) Transition pathways for Malaysian paddy farmers to sustainable agricultural practices: An integrated exhibiting tactics to adopt Green fertilizer. Land use policy 90:104255. https://doi.org/10.1016/j.landusepol.2019.104255. Search in Google Scholar

3. Aeron A, Khare E, Jha CK, Meena VS, Aziz SMA, Islam MT, Rajashekara H (2020) Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Archives of microbiology 202(4):665-676. doi:10.1007/s00203-019-01779-w.10.1007/s00203-019-01779-w31781809 Search in Google Scholar

4. Basu A, Prasad P, Das SN, Kalam S, Sayyed R, Reddy M, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13(3):1140. https://doi.org/10.3390/su13031140. Search in Google Scholar

5. Garrity GM, Brenner DJ, Krieg N, Staley J, Manual BS (2005) Systematic bacteriology. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsiloproteobacteria, Bergey’s Manual Trust, Department of Microbiology and Molecular Genetics. Springer USA P2.10.1007/0-387-28021-9 Search in Google Scholar

6. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological research 206:131-140. https://doi.org/10.1016/j.micres.2017.08.016.29146250 Search in Google Scholar

7. Hashemnejad F, Barin M, Khezri M, Ghoosta Y, Hammer EC (2021) Isolation and identification of insoluble zinc-solubilising bacteria and evaluation of their ability to solubilise various zinc minerals. Journal of soil science and plant nutrition 21(3): 2501-2509. 10.1007/s42729-021-00540-x.10.1007/s42729-021-00540-x Search in Google Scholar

8. Kaloterakis N, van Delden SH, Hartley S, De Deyn GB (2021) Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae 288: 110383. https://doi.org/10.1016/j.scienta.2021.110383. Search in Google Scholar

9. Kashyap B K, Solanki MK, Pandey AK, Prabha,, Kumar P, Kumari B (2019) Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology Plant health under biotic stress. Springer, pp. 219-236. DOI: 10.1007/978-981-13-6040-4_11.10.1007/978-981-13-6040-4_11 Search in Google Scholar

10. Kumar A, Patel J, Meena VS, Ramteke P (2019) Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. Journal of Plant Nutrition 42 (11-12):1402-1415. https://doi.org/10.1080/01904167.2019.1616757. Search in Google Scholar

11. Mazumdar D, Saha SP, Ghosh S (2020) Isolation, screening and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level. International Journal of Vegetable Science 26(4):333-350. https://doi.org/10.1080/19315260.2019.1632401. Search in Google Scholar

12. Mohanty P, Singh P K, Chakraborty D, Mishra S, Pattnaik R (2021) Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in Sustainable Food Systems 5:667150. https://doi.org/10.3389/fsufs.2021.667150. Search in Google Scholar

13. Mohite B. (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of soil science and plant nutrition 13(3):638-649. http://dx.doi.org/10.4067/S0718-95162013005000051.10.4067/S0718-95162013005000051 Search in Google Scholar

14. Molnár K, Nyárádi II, Bíró-Janka B, Simó I, Bálint J, Domokos E. (2020) Preliminary Study of the Effect of Chemical and Organic Fertilizers on a Semi-Natural Grassland in Vlăhiţa, Harghita Mountains, Romania. Acta Biologica Marisiensis 3(2):56-65. DOI: 10.2478/abmj-2020-0011.10.2478/abmj-2020-0011 Search in Google Scholar

15. Mustafa S, Kabir S, Shabbir U, Batool R (2019) Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 78(2):115-123. doi:10.1007/s13199-019-00602-w.10.1007/s13199-019-00602-w Search in Google Scholar

16. Nazir N, Kamili AN, Shah D (2018) Mechanism of plant growth promoting rhizobacteria (PGPR) in Enhancing plant growth: A review. Int. J. Manag. Technol. Eng 8:709-721. Search in Google Scholar

17. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, and Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in public health 4:148. https://doi.org/10.3389/fpubh.2016.00148.494757927486573 Search in Google Scholar

18. Pathak D, Lone R, Khan S, Koul K (2019) Isolation, screening and molecular characterization of free-living bacteria of potato (Solanum tuberosum L.) and their interplay impact on growth and production of potato plant under mycorrhizal association. Scientia Horticulturae 252: 388-397. https://doi.org/10.1016/j.scienta.2019.02.072. Search in Google Scholar

19. Péterfi O, Domokos E (2018) Mutualistic and Endophytic Microorganisms of: Description, Role and Use. Acta Biologica Marisiensis 1(2):5-21. DOI:https://doi.org/10.2478/abmj-2018-0009. Search in Google Scholar

20. Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR amelioration in sustainable agriculture 2:129-157. https://doi.org/10.1016/B978-0-12-815879-1.00007-0. Search in Google Scholar

21. Rai PK, Singh M, Anand K, Saurabh S, Kaur T, Kour D, Kumar M (2020) Role and potential applications of plant growth-promoting rhizobacteria for sustainable agriculture New and Future Developments in Microbial Biotechnology and Bioengineering Elsevier, pp. 49-60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X. Search in Google Scholar

22. Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, and Kaushal J. (2021) An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production 283:124657. https://doi.org/10.1016/j.jclepro.2020.124657. Search in Google Scholar

23. Sabarwal A, Kumar K, and Singh, RP (2018) Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environmental toxicology and pharmacology 63:103-114. https://doi.org/10.1016/j.etap.2018.08.018.30199797 Search in Google Scholar

24. Sansinenea E (2019) Bacillus spp. as plant growth-promoting bacteria: Secondary metabolites of plant growth promoting rhizomicroorganisms. Springer pp225-237. DOI: 10.1007/978-981-13-5862-3_11.10.1007/978-981-13-5862-3_11 Search in Google Scholar

25. Saxena A, Kumar M, Chakdar H, Anuroopa N, Bagyaraj D.(2020) Bacillus species in soil as a natural resource for plant health and nutrition. Journal of applied microbiology 128(6): 1583-1594. https://doi.org/10.1111/jam.14506.31705597 Search in Google Scholar

26. Sehrawat A, Sindhu SS, Glick BR (2022) Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32(1): 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9. Search in Google Scholar

27. Sharma N, and Singhvi, R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. International journal of agriculture, environment and biotechnology 10(6):675-680. 10.5958/2230-732X.2017.00083.3.10.5958/2230-732X.2017.00083.3 Search in Google Scholar

28. Tang A, Haruna AO, Majid NMA, and Jalloh MB (2020) Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms 8(3):442. https://doi.org/10.3390/microorganisms8030442.714398032245141 Search in Google Scholar

29. Wang Y, Peng S, Hua Q, Qiu C. Wu P, Liu, X, Lin X (2021) The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Frontiers in Microbiology 3:12-18. 10.3389/fmicb.2021.693535.10.3389/fmicb.2021.693535832266334335521 Search in Google Scholar

eISSN:
2668-5124
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry, Plant Science, Pharmacy, other