Zacytuj

Sethi S, Bhushan R. Enantioselective LC analysis and determination of selective serotonin reuptake inhibitors. Biomed Chromatogr. 2020; 34:e4730. doi: 10.1002/bmc.4730 SethiS BhushanR Enantioselective LC analysis and determination of selective serotonin reuptake inhibitors Biomed Chromatogr 2020 34 e4730 10.1002/bmc.4730 31652353 Open DOISearch in Google Scholar

Luo Y, Kataoka Y, Ostinelli EG, Cipriani A, Furukawa TA. National prescription patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: a population representative survey based analysis. Front Psychiatry. 2020; 11:35. doi: 10.3389/fpsyt.2020.00035 LuoY KataokaY OstinelliEG CiprianiA FurukawaTA National prescription patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: a population representative survey based analysis Front Psychiatry 2020 11 35 10.3389/fpsyt.2020.00035 703362532116850 Open DOISearch in Google Scholar

Boyce P, Hopwood M, Morris G, Hamilton A, Bassett D, Baune BT, et al. Switching antidepressants in the treatment of major depression: when, how and what to switch to? J Affect Disord. 2020; 261:160–3. BoyceP HopwoodM MorrisG HamiltonA BassettD BauneBT Switching antidepressants in the treatment of major depression: when, how and what to switch to? J Affect Disord 2020 261 160 3 10.1016/j.jad.2019.09.08231630037 Search in Google Scholar

Vashistha VK, Kumar A. Stereochemical facets of clinical β-blockers: an overview. Chirality. 2020; 32:722–35. VashisthaVK KumarA Stereochemical facets of clinical β-blockers: an overview Chirality 2020 32 722 35 10.1002/chir.2320032105373 Search in Google Scholar

Maryanoff BE, McComsey DF, Craig JC. Chiroptical properties and absolute configuration of pyrroloisoquinoline antidepressants. Chirality. 1998; 10:169–72. MaryanoffBE McComseyDF CraigJC Chiroptical properties and absolute configuration of pyrroloisoquinoline antidepressants Chirality 1998 10 169 72 10.1002/chir.26 Search in Google Scholar

Coutts RT, Baker GB. Implications of chirality and geometric isomerism in some psychoactive drugs and their metabolites. Chirality. 1989; 1:99–120. CouttsRT BakerGB Implications of chirality and geometric isomerism in some psychoactive drugs and their metabolites Chirality 1989 1 99 120 10.1002/chir.5300102042701850 Search in Google Scholar

Wei Y, Chang L, Hashimoto K. A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol Biochem Behav. 2020; 190:172870. doi: 10.1016/j.pbb.2020.172870 WeiY ChangL HashimotoK A historical review of antidepressant effects of ketamine and its enantiomers Pharmacol Biochem Behav 2020 190 172870 10.1016/j.pbb.2020.172870 32035078 Open DOISearch in Google Scholar

Pereira VS, Hiroaki-Sato VA. A brief history of antidepressant drug development: from tricyclics to beyond ketamine. Acta Neuropsychiatr. 2018; 30:307–22. PereiraVS Hiroaki-SatoVA A brief history of antidepressant drug development: from tricyclics to beyond ketamine Acta Neuropsychiatr 2018 30 307 22 10.1017/neu.2017.3929388517 Search in Google Scholar

Budău M, Hancu G, Rusu A, Cârcu-Dobrin M, Muntean DL. Chirality of modern antidepressants: an overview. Adv Pharm Bull. 2017; 7:495–500. BudăuM HancuG RusuA Cârcu-DobrinM MunteanDL Chirality of modern antidepressants: an overview Adv Pharm Bull 2017 7 495 500 10.15171/apb.2017.061578820429399539 Search in Google Scholar

Nageswara Rao R, Guru Prasad K. Stereospecific LC and LC-MS bioassays of antidepressants and psychotics. Biomed Chromatogr. 2015; 29:21–40. Nageswara RaoR Guru PrasadK Stereospecific LC and LC-MS bioassays of antidepressants and psychotics Biomed Chromatogr 2015 29 21 40 10.1002/bmc.335625355601 Search in Google Scholar

Baker GB, Prior TI. Stereochemistry and drug efficacy and development: relevance of chirality to antidepressant and antipsychotic drugs. Ann Med. 2002; 34:537–43. BakerGB PriorTI Stereochemistry and drug efficacy and development: relevance of chirality to antidepressant and antipsychotic drugs Ann Med 2002 34 537 43 10.1080/078538902321117742 Search in Google Scholar

Baumann P, Eap CB. Enantiomeric antidepressant drugs should be considered on individual merit. Hum Psychopharmacol. 2001; 16(Suppl 2):S85–92. BaumannP EapCB Enantiomeric antidepressant drugs should be considered on individual merit Hum Psychopharmacol 2001 16 Suppl 2 S85 92 10.1002/hup.336 Search in Google Scholar

DeVane CL, Boulton DW. Great expectations in stereochemistry: focus on antidepressants. CNS Spectr. 2002(Suppl 1); 7:28–33. DeVaneCL BoultonDW Great expectations in stereochemistry: focus on antidepressants CNS Spectr 2002 Suppl 1 7 28 33 10.1017/S1092852900028571 Search in Google Scholar

Wasan AD, Smith HS, Argoff CE. Antidepressants. Ch. 61. In: Smith HS, editors. Current therapy in pain. Philadelphia, PA: Elsevier; 2009, p. 448–58. WasanAD SmithHS ArgoffCE Antidepressants. Ch. 61 In: SmithHS editors. Current therapy in pain Philadelphia, PA Elsevier 2009 448 58 10.1016/B978-1-4160-4836-7.00061-4 Search in Google Scholar

Protti M, Mandrioli R, Marasca C, Cavalli A, Serretti A, Mercolini L. New-generation, non-SSRI antidepressants: Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med Res Rev. 2020; 40:1794–832. ProttiM MandrioliR MarascaC CavalliA SerrettiA MercoliniL New-generation, non-SSRI antidepressants: Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others Med Res Rev 2020 40 1794 832 10.1002/med.21671 Search in Google Scholar

Milne RJ, Goa KL. Citalopram. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs. 1991; 41:450–77. MilneRJ GoaKL Citalopram. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness Drugs 1991 41 450 77 10.2165/00003495-199141030-00008 Search in Google Scholar

Pollock BG. Citalopram: a comprehensive review. Expert Opin Pharmacother. 2001; 2:681–98. PollockBG Citalopram: a comprehensive review Expert Opin Pharmacother 2001 2 681 98 10.1517/14656566.2.4.681 Search in Google Scholar

Hyttel J, Bøgesø KP, Perregaard J, Sánchez C. The pharmacological effect of citalopram resides in the (S)-(+)-enantiomer. J Neural Transm Gen Sect. 1992; 88:157–60. HyttelJ BøgesøKP PerregaardJ SánchezC The pharmacological effect of citalopram resides in the (S)-(+)-enantiomer J Neural Transm Gen Sect 1992 88 157 60 10.1007/BF01244820 Search in Google Scholar

Mørk A, Kreilgaard M, Sánchez C. The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats. Neuropharmacology. 2003; 45:167–73. MørkA KreilgaardM SánchezC The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats Neuropharmacology 2003 45 167 73 10.1016/S0028-3908(03)00138-2 Search in Google Scholar

Baumann P, Zullino DF, Eap CB. Enantiomers’ potential in psychopharmacology—a critical analysis with special emphasis on the antidepressant escitalopram. Eur Neuropsychopharmacol. 2002; 12:433–44. BaumannP ZullinoDF EapCB Enantiomers’ potential in psychopharmacology—a critical analysis with special emphasis on the antidepressant escitalopram Eur Neuropsychopharmacol 2002 12 433 44 10.1016/S0924-977X(02)00051-2 Search in Google Scholar

Kugelberg FC, Carlsson B, Ahlner J, Bengtsson F. Stereoselective single-dose kinetics of citalopram and its metabolites in rats. Chirality. 2003; 15:622–9. KugelbergFC CarlssonB AhlnerJ BengtssonF Stereoselective single-dose kinetics of citalopram and its metabolites in rats Chirality 2003 15 622 9 10.1002/chir.10266 Search in Google Scholar

Kingbäck M, Carlsson B, Ahlner J, Bengtsson F, Kugelberg FC. Cytochrome P450-dependent disposition of the enantiomers of citalopram and its metabolites: in vivo studies in Sprague-Dawley and Dark Agouti rats. Chirality. 2011; 23:172–7. KingbäckM CarlssonB AhlnerJ BengtssonF KugelbergFC Cytochrome P450-dependent disposition of the enantiomers of citalopram and its metabolites: in vivo studies in Sprague-Dawley and Dark Agouti rats Chirality 2011 23 172 7 10.1002/chir.20901 Search in Google Scholar

Holmgren P, Carlsson B, Zackrisson AL, Lindblom B, Dahl ML, Scordo MG, et al. Enantioselective analysis of citalopram and its metabolites in postmortem blood and genotyping for CYD2D6 and CYP2C19. J Anal Toxicol. 2004; 28:94–104. HolmgrenP CarlssonB ZackrissonAL LindblomB DahlML ScordoMG Enantioselective analysis of citalopram and its metabolites in postmortem blood and genotyping for CYD2D6 and CYP2C19 J Anal Toxicol 2004 28 94 104 10.1093/jat/28.2.94 Search in Google Scholar

Gellad WF, Choi P, Mizah M, Good CB, Kesselheim AS. Assessing the chiral switch: approval and use of single-enantiomer drugs, 2001 to 2011. Am J Manag Care. 2014; 20:e90–7. GelladWF ChoiP MizahM GoodCB KesselheimAS Assessing the chiral switch: approval and use of single-enantiomer drugs, 2001 to 2011 Am J Manag Care 2014 20 e90 7 Search in Google Scholar

Budău M, Hancu G, Muntean DL, Papp LA, Cârje AG, Garaj V. Enantioseparation of citalopram enantiomers by capillary electrophoresis: method development through experimental design and computational modeling. Chirality. 2020; 32:1119–28. BudăuM HancuG MunteanDL PappLA CârjeAG GarajV Enantioseparation of citalopram enantiomers by capillary electrophoresis: method development through experimental design and computational modeling Chirality 2020 32 1119 28 10.1002/chir.23255 Search in Google Scholar

Pastoor D, Gobburu J. Clinical pharmacology review of escitalopram for the treatment of depression. Expert Opin Drug Metab Toxicol. 2014; 10:121–8. PastoorD GobburuJ Clinical pharmacology review of escitalopram for the treatment of depression Expert Opin Drug Metab Toxicol 2014 10 121 8 10.1517/17425255.2014.863873 Search in Google Scholar

Michman E, Agranat I. Classroom enters the courtroom: stereochemistry of SN1 and SN2 reactions in enantiomer patent litigations of the antidepressant escitalopram. Chirality. 2016; 28:39–43. MichmanE AgranatI Classroom enters the courtroom: stereochemistry of SN1 and SN2 reactions in enantiomer patent litigations of the antidepressant escitalopram Chirality 2016 28 39 43 10.1002/chir.22501 Search in Google Scholar

Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. Citalopram—a review of pharmacological and clinical effects. J Psychiatry Neurosci. 2000; 25:241–54. Bezchlibnyk-ButlerK AleksicI KennedySH Citalopram—a review of pharmacological and clinical effects J Psychiatry Neurosci 2000 25 241 54 Search in Google Scholar

Owens MJ, Knight DL, Nemeroff CB. Second generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry. 2001; 50:345–50. OwensMJ KnightDL NemeroffCB Second generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine Biol Psychiatry 2001 50 345 50 10.1016/S0006-3223(01)01145-3 Search in Google Scholar

Budău M, Hancu G, Rusu A, Muntean DL. Analytical methodologies for the enantiodetermination of citalopram and its metabolites. Chirality. 2020; 32:32–41. BudăuM HancuG RusuA MunteanDL Analytical methodologies for the enantiodetermination of citalopram and its metabolites Chirality 2020 32 32 41 10.1002/chir.2313931702071 Search in Google Scholar

Auquier P, Robitail S, Llorca PM, Rive B. Comparison of escitalopram and citalopram efficacy: a meta-analysis. Int J Psychiatry Clin Pract. 2003; 7:259–68. AuquierP RobitailS LlorcaPM RiveB Comparison of escitalopram and citalopram efficacy: a meta-analysis Int J Psychiatry Clin Pract 2003 7 259 68 10.1080/1365150031000340824930412 Search in Google Scholar

Sánchez C. The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram. Basic Clin Pharmacol Toxicol. 2006; 99:91–5. SánchezC The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram Basic Clin Pharmacol Toxicol 2006 99 91 5 10.1111/j.1742-7843.2006.pto_295.x16918708 Search in Google Scholar

Montgomery SA, Loft H, Sánchez C, Reines EH, Papp M. Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol. 2001; 88:282–6. MontgomerySA LoftH SánchezC ReinesEH PappM Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model Pharmacol Toxicol 2001 88 282 6 10.1111/j.1600-0773.2001.880511.x Search in Google Scholar

Gorman JM, Korotzer A, Su G. Efficacy comparison of escitalopram and citalopram in the treatment of major depressive disorder: pooled analysis of placebo controlled trials. CNS Spectr. 2002; 7(4 Suppl 1):40–4. GormanJM KorotzerA SuG Efficacy comparison of escitalopram and citalopram in the treatment of major depressive disorder: pooled analysis of placebo controlled trials CNS Spectr 2002 7 4 Suppl 1 40 4 10.1017/S1092852900028595 Search in Google Scholar

Li H, Li T, Li G, Luo J. Citalopram and escitalopram in the treatment of major depressive disorder: a pooled analysis of 3 clinical trials. Ann Clin Psychiatry. 2014; 26:281–7. LiH LiT LiG LuoJ Citalopram and escitalopram in the treatment of major depressive disorder: a pooled analysis of 3 clinical trials Ann Clin Psychiatry 2014 26 281 7 Search in Google Scholar

Sidhu J, Priskorn M, Poulsen M, Segonzac A, Grollier G, Larsen F. Steady-state pharmacokinetics of the enantiomers of citalopram and its metabolites in humans. Chirality. 1997; 9:686–92. SidhuJ PriskornM PoulsenM SegonzacA GrollierG LarsenF Steady-state pharmacokinetics of the enantiomers of citalopram and its metabolites in humans Chirality 1997 9 686 92 10.1002/(SICI)1520-636X(1997)9:7<686::AID-CHIR9>3.0.CO;2-5 Search in Google Scholar

Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov. 2014; 9:567–78. Perez-CaballeroL Torres-SanchezS BravoL MicoJA BerrocosoE Fluoxetine: a case history of its discovery and preclinical development Expert Opin Drug Discov 2014 9 567 78 10.1517/17460441.2014.907790 Search in Google Scholar

Aspeslet LJ, Baker GB, Coutts RT, Torok-Both GA. The effects of desipramine and iprindole on levels of enantiomers of fluoxetine in rat brain and urine. Chirality. 1994; 6:86–90. AspesletLJ BakerGB CouttsRT Torok-BothGA The effects of desipramine and iprindole on levels of enantiomers of fluoxetine in rat brain and urine Chirality 1994 6 86 90 10.1002/chir.530060208 Search in Google Scholar

Schmidt MJ, Fuller RW, Wong DT. Fluoxetine, a highly selective serotonin reuptake inhibitor: a review of preclinical studies. Br J Psychiatry. 1998; 153(Suppl 3):40–6. SchmidtMJ FullerRW WongDT Fluoxetine, a highly selective serotonin reuptake inhibitor: a review of preclinical studies Br J Psychiatry 1998 153 Suppl 3 40 6 10.1192/S0007125000297274 Search in Google Scholar

Lemberger L, Rowe H, Carmichael R, Crabtree R, Horng JS, Bymaster F, Wong D. Fluoxetine, a selective serotonin uptake inhibitor. Clin Pharmacol Ther. 1978; 23:421–9. LembergerL RoweH CarmichaelR CrabtreeR HorngJS BymasterF WongD Fluoxetine, a selective serotonin uptake inhibitor Clin Pharmacol Ther 1978 23 421 9 10.1002/cpt1978234421 Search in Google Scholar

Stevens JC, Wrighton SA. Interaction of the enantiomers of fluoxetine and norfluoxetine with human liver cytochrome P450. J Pharmacol Exp Ther. 1993; 266:964–71. StevensJC WrightonSA Interaction of the enantiomers of fluoxetine and norfluoxetine with human liver cytochrome P450 J Pharmacol Exp Ther 1993 266 964 71 Search in Google Scholar

Mandrioli R, Cantelli Forti G, Raggi MA. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome P450. Curr Drug Metab. 2006; 7:127–33. MandrioliR Cantelli FortiG RaggiMA Fluoxetine metabolism and pharmacological interactions: the role of cytochrome P450 Curr Drug Metab 2006 7 127 33 10.2174/138920006775541561 Search in Google Scholar

Fuller RW, Snoddy HD, Krushinski JH, Robertson DW. Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo. Neuropharmacology. 1992; 31:997–1000. FullerRW SnoddyHD KrushinskiJH RobertsonDW Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo Neuropharmacology 1992 31 997 1000 10.1016/0028-3908(92)90100-4 Search in Google Scholar

Eap CB, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M, Baumann P. Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol. 2001; 21:330–4. EapCB BondolfiG ZullinoD Savary-CosendaiL Powell-GolayK KoselM BaumannP Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers J Clin Psychopharmacol 2001 21 330 4 10.1097/00004714-200106000-00013 Search in Google Scholar

Sekhon BS. Exploiting the power of stereochemistry in drugs: an overview of racemic and enantiopure drugs. J Mod Med Chem. 2013; 1:10–36. SekhonBS Exploiting the power of stereochemistry in drugs: an overview of racemic and enantiopure drugs J Mod Med Chem 2013 1 10 36 10.12970/2308-8044.2013.01.01.2 Search in Google Scholar

Van der Knaap N, Wiedermann D, Schubert D, Hoehn M, Homberg JR. Perinatal SSRI exposure affects brain functional activity associated with whisker stimulation in adolescent and adult rats. Sci Rep. 2021; 11:1680. doi: 10.1038/s41598-021-81327-z Van der KnaapN WiedermannD SchubertD HoehnM HombergJR Perinatal SSRI exposure affects brain functional activity associated with whisker stimulation in adolescent and adult rats Sci Rep 2021 11 1680 10.1038/s41598-021-81327-z Open DOISearch in Google Scholar

Romeo R, Knapp M, Hellier J, Dewey M, Ballard C, Baldwin R, et al. Cost-effectiveness analyses for mirtazapine and sertraline in dementia: randomised controlled trial. Br J Psychiatry. 2013; 202:121–8. RomeoR KnappM HellierJ DeweyM BallardC BaldwinR Cost-effectiveness analyses for mirtazapine and sertraline in dementia: randomised controlled trial Br J Psychiatry 2013 202 121 8 10.1192/bjp.bp.112.115212 Search in Google Scholar

Katzelnick DJ, Kobak KA, Greist JH, Jefferson JW, Mantle JM, Serlin, RC. Sertraline for social phobia: a double-blind, placebo-controlled crossover study. Am J Psychiatry. 1995; 152:1368–71. KatzelnickDJ KobakKA GreistJH JeffersonJW MantleJM SerlinRC Sertraline for social phobia: a double-blind, placebo-controlled crossover study Am J Psychiatry 1995 152 1368 71 10.1176/ajp.152.9.1368 Search in Google Scholar

Sokolenko M, Kutcher S. Sertraline for social anxiety disorder. Expert Rev Neurother. 2003; 3:787–95. SokolenkoM KutcherS Sertraline for social anxiety disorder Expert Rev Neurother 2003 3 787 95 10.1586/14737175.3.6.787 Search in Google Scholar

Cipriani A, La Ferla T, Furukawa TA, Signoretti A, Nakagawa A, Churchill R, et al. Sertraline versus other antidepressive agents for depression. Cochrane Database Syst Rev. 2010; (4):CD006117. doi: 10.1002/14651858.CD006117.pub4 CiprianiA La FerlaT FurukawaTA SignorettiA NakagawaA ChurchillR Sertraline versus other antidepressive agents for depression Cochrane Database Syst Rev 2010 4 CD006117. 10.1002/14651858.CD006117.pub4 Open DOISearch in Google Scholar

Rosettia A, Ferretti R, Zanitti L, Casulli A, Villani C, Cirilli C. Single-run reversed-phase HPLC method for determining sertraline content, enantiomeric purity, and related substances in drug substance and finished product. J Pharm Anal. 2020; 10:610–6. RosettiaA FerrettiR ZanittiL CasulliA VillaniC CirilliC Single-run reversed-phase HPLC method for determining sertraline content, enantiomeric purity, and related substances in drug substance and finished product J Pharm Anal 2020 10 610 6 10.1016/j.jpha.2020.11.002 Search in Google Scholar

Rao RN, Kumar KN, Shinde DD. Determination of rat plasma levels of sertraline enantiomers using direct injection with achiral–chiral column switching by LC–ESI/MS/MS. J Pharm Biomed Anal. 2010; 52:398–405. RaoRN KumarKN ShindeDD Determination of rat plasma levels of sertraline enantiomers using direct injection with achiral–chiral column switching by LC–ESI/MS/MS J Pharm Biomed Anal 2010 52 398 405 10.1016/j.jpba.2009.09.020 Search in Google Scholar

Segura M, Roura L, de la Torre R, Joglar J. Synthesis of the major metabolites of paroxetine. Bioorg Chem. 2003; 31:248–58. SeguraM RouraL de la TorreR JoglarJ Synthesis of the major metabolites of paroxetine Bioorg Chem 2003 31 248 58 10.1016/S0045-2068(03)00040-3 Search in Google Scholar

Muth EA, Haskins JT, Moyer JA, Husbands GE, Nielsen ST, Sigg EB. Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, an ethyl cyclohexanol derivative. Biochem Pharmacol. 1986; 35:4493–7. MuthEA HaskinsJT MoyerJA HusbandsGE NielsenST SiggEB Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, an ethyl cyclohexanol derivative Biochem Pharmacol 1986 35 4493 7 10.1016/0006-2952(86)90769-0 Search in Google Scholar

Smith D, Dempster C, Glanville J, Freemantle N, Anderson I. Efficacy and tolerability of venlafaxine compared with selective serotonin reuptake inhibitors and other antidepressants: a meta-analysis. Br J Psychiatry. 2002; 180:396–404. SmithD DempsterC GlanvilleJ FreemantleN AndersonI Efficacy and tolerability of venlafaxine compared with selective serotonin reuptake inhibitors and other antidepressants: a meta-analysis Br J Psychiatry 2002 180 396 404 10.1192/bjp.180.5.396 Search in Google Scholar

Holliday SM, Benfield P. A review of its pharmacology and therapeutic potential in depression. Drugs. 1995; 49:280–94. HollidaySM BenfieldP A review of its pharmacology and therapeutic potential in depression Drugs 1995 49 280 94 10.2165/00003495-199549020-00010 Search in Google Scholar

Kandhwal K, Dey S, Nazarudheen S, Reyar S, Mishra S, Thudi NR, et al. Establishing bioequivalence of racemic venlafaxine formulations using stereoselective assay method: is it necessary? Chirality. 2011; 23:948–54. KandhwalK DeyS NazarudheenS ReyarS MishraS ThudiNR Establishing bioequivalence of racemic venlafaxine formulations using stereoselective assay method: is it necessary? Chirality 2011 23 948 54 10.1002/chir.21021 Search in Google Scholar

Golden RN, Nicholas L. Antidepressant efficacy of venlafaxine. Depress Anxiety. 2000; 12(Suppl 1):45–9. GoldenRN NicholasL Antidepressant efficacy of venlafaxine Depress Anxiety 2000 12 Suppl 1 45 9 10.1002/1520-6394(2000)12:1+<45::AID-DA5>3.0.CO;2-5 Search in Google Scholar

Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second generation antidepressants: an update. Clin Ther. 2008; 30:1206–27. SpinaE SantoroV D’ArrigoC Clinically relevant pharmacokinetic drug interactions with second generation antidepressants: an update Clin Ther 2008 30 1206 27 10.1016/S0149-2918(08)80047-1 Search in Google Scholar

Wang CP, Howell SR, Scatina J, Sisenwine SF. The disposition of venlafaxine enantiomers in dogs, rats, and humans receiving venlafaxine. Chirality. 1992; 4:84–90. WangCP HowellSR ScatinaJ SisenwineSF The disposition of venlafaxine enantiomers in dogs, rats, and humans receiving venlafaxine Chirality 1992 4 84 90 10.1002/chir.530040204 Search in Google Scholar

Ereshefsky L, Dugan D. Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: focus on venlafaxine. Depress Anxiety. 2000; 12(Suppl 1):30–44. EreshefskyL DuganD Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: focus on venlafaxine Depress Anxiety 2000 12 Suppl 1 30 44 10.1002/1520-6394(2000)12:1+<30::AID-DA4>3.0.CO;2-G Search in Google Scholar

Lunn MPT, Hughes RAC, Wiffen PJ. Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia. Cochrane Database Syst Rev. 2014; (1):CD007115. doi: 10.1002/14651858.CD007115.pub3 LunnMPT HughesRAC WiffenPJ Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia Cochrane Database Syst Rev 2014 1 CD007115. 10.1002/14651858.CD007115.pub3 Open DOISearch in Google Scholar

Liu H, Hoff BH, Anthonsen T. Chemo-enzymatic synthesis of the antidepressant duloxetine and its enantiomer. Chirality. 2000; 12:26–9. LiuH HoffBH AnthonsenT Chemo-enzymatic synthesis of the antidepressant duloxetine and its enantiomer Chirality 2000 12 26 9 10.1002/(SICI)1520-636X(2000)12:1<26::AID-CHIR5>3.0.CO;2-Z Search in Google Scholar

Li J, Yang L, Pu C, Tang Y, Yun H, Han P. The role of duloxetine in stress urinary incontinence: a systematic review and meta-analysis. Int Urol Nephrol. 2013; 45: 679–86. LiJ YangL PuC TangY YunH HanP The role of duloxetine in stress urinary incontinence: a systematic review and meta-analysis Int Urol Nephrol 2013 45 679 86 10.1007/s11255-013-0410-6 Search in Google Scholar

Larik FA, Saeed A, Channar PA, Mehfooz H. Stereoselective synthetic approaches towards (S)-duloxetine: 2000 to date. Tetrahedron: Asymmetry. 2016; 27:1101–12. LarikFA SaeedA ChannarPA MehfoozH Stereoselective synthetic approaches towards (S)-duloxetine: 2000 to date Tetrahedron: Asymmetry 2016 27 1101 12 10.1016/j.tetasy.2016.09.007 Search in Google Scholar

Lupu D, Hancu G. Achiral and chiral analysis of duloxetine by chromatographic and electrophoretic methods, a review on the separation methodologies. Biomed Chromatogr. 2021; 35:e4883. doi: 10.1002/bmc.4883 LupuD HancuG Achiral and chiral analysis of duloxetine by chromatographic and electrophoretic methods, a review on the separation methodologies Biomed Chromatogr 2021 35 e4883 10.1002/bmc.4883 Open DOISearch in Google Scholar

Forest Laboratories. Savella (milnacipran HCl) full prescribing information. U.S. Food and Drug Administration Reference ID: 3226972. New Jersey: Cypress Bioscience-Forest Laboratories; 2012; 1–25. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022256s013lbl.pdf Forest Laboratories Savella (milnacipran HCl) full prescribing information. U.S. Food and Drug Administration Reference ID: 3226972 New Jersey Cypress Bioscience-Forest Laboratories 2012 1 25 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022256s013lbl.pdf Search in Google Scholar

Yang J, Lu X, Bi Y, Qin F, Li F. Chiral separation of duloxetine and its R-enantiomer by LC. Chromatographia. 2007; 66:389–93. YangJ LuX BiY QinF LiF Chiral separation of duloxetine and its R-enantiomer by LC Chromatographia 2007 66 389 93 10.1365/s10337-007-0337-0 Search in Google Scholar

Puech A, Montgomery SA, Prost JF, Solles A, Briley M. Milnacipran, a new serotonin and noradrenaline reuptake inhibitor: an overview of its antidepressant activity and clinical tolerability. Int Clin Psychopharmacol. 1997; 12:99–108. PuechA MontgomerySA ProstJF SollesA BrileyM Milnacipran, a new serotonin and noradrenaline reuptake inhibitor: an overview of its antidepressant activity and clinical tolerability Int Clin Psychopharmacol 1997 12 99 108 10.1097/00004850-199703000-00005 Search in Google Scholar

Puozzo C, Leonard BE. Pharmacokinetics of milnacipran in comparison with other antidepressants. Int Clin Psychopharmacol. 1996; 11(Suppl 4):S15–27. PuozzoC LeonardBE Pharmacokinetics of milnacipran in comparison with other antidepressants Int Clin Psychopharmacol 1996 11 Suppl 4 S15 27 10.1097/00004850-199609004-00003 Search in Google Scholar

Melloni P, Della Torre A, Lazzari E, Mazzini G, Meroni M. Configurational studies on 2-[α-2-ethoxyphenoxybenzyl] morpholine. Tetrahedron. 1985; 41:1393–9. MelloniP Della TorreA LazzariE MazziniG MeroniM Configurational studies on 2-[α-2-ethoxyphenoxybenzyl] morpholine Tetrahedron 1985 41 1393 9 10.1016/S0040-4020(01)96541-X Search in Google Scholar

Strolin Benedetti M, Frigerio E, Tocchetti P, Brianceschi G, Castelli MG, Pellizzoni C, Dostert P. Stereoselective and species-dependent kinetics of reboxetine in mouse and rat. Chirality. 1995; 7:285–9. Strolin BenedettiM FrigerioE TocchettiP BrianceschiG CastelliMG PellizzoniC DostertP Stereoselective and species-dependent kinetics of reboxetine in mouse and rat Chirality 1995 7 285 9 10.1002/chir.530070416 Search in Google Scholar

Fleishaker JC, Mucci M, Pellizzoni C, Poggesi I. Absolute bioavailability of reboxetine enantiomers and effect of gender on pharmacokinetics. Biopharm Drug Dispos. 1999; 20:53–7. FleishakerJC MucciM PellizzoniC PoggesiI Absolute bioavailability of reboxetine enantiomers and effect of gender on pharmacokinetics Biopharm Drug Dispos 1999 20 53 7 10.1002/(SICI)1099-081X(199901)20:1<53::AID-BDD157>3.0.CO;2-P Search in Google Scholar

Rey E, Dostert P, d’Athis Ph, Jannuzzo MG, Poggesi I, Olive G. Dose proportionality of reboxetine enantiomers in healthy male volunteers. Biopharm Drug Dispos. 1999; 20:177–81. ReyE DostertP d’AthisPh JannuzzoMG PoggesiI OliveG Dose proportionality of reboxetine enantiomers in healthy male volunteers Biopharm Drug Dispos 1999 20 177 81 10.1002/(SICI)1099-081X(199905)20:4<177::AID-BDD172>3.0.CO;2-I Search in Google Scholar

Dostert P, Benedetti MS, Poggesi I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharm. 1997; 7(Suppl 1):S23–35. DostertP BenedettiMS PoggesiI Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor Eur Neuropsychopharm 1997 7 Suppl 1 S23 35 10.1016/S0924-977X(97)00417-3 Search in Google Scholar

Denolle T, Pellizzoni C, Jannuzzo MG, Poggesi I. Hemodynamic effects of reboxetine in healthy male volunteers. Clin Pharmacol Ther. 1999; 66:282–7. DenolleT PellizzoniC JannuzzoMG PoggesiI Hemodynamic effects of reboxetine in healthy male volunteers Clin Pharmacol Ther 1999 66 282 7 10.1016/S0009-9236(99)70036-6 Search in Google Scholar

Frigerio E, Benecchi A, Brianceschi G, Pellizzoni C, Poggesi I, Strolin Benedetti M, Dostert P. Pharmacokinetics of reboxetine enantiomers in the dog. Chirality. 1997; 9:303–6. FrigerioE BenecchiA BrianceschiG PellizzoniC PoggesiI Strolin BenedettiM DostertP Pharmacokinetics of reboxetine enantiomers in the dog Chirality 1997 9 303 6 10.1002/(SICI)1520-636X(1997)9:3<303::AID-CHIR17>3.0.CO;2-R Search in Google Scholar

Cocchiara G, Battaglia R, Pevarello P, Strolin Benedetti M. Comparison of the disposition and of the metabolic pattern of reboxetine, a new antidepressant, in the rat, dog, monkey and man. Eur J Drug Metab Pharmacokinet. 1991; 16:231–9. CocchiaraG BattagliaR PevarelloP Strolin BenedettiM Comparison of the disposition and of the metabolic pattern of reboxetine, a new antidepressant, in the rat, dog, monkey and man Eur J Drug Metab Pharmacokinet 1991 16 231 9 10.1007/BF03189965 Search in Google Scholar

Wienkers LC, Allievi C, Hauer MJ, Wynalda MA. Cytochrome P450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Drug Metab Dispos. 1999; 27:1334–40. WienkersLC AllieviC HauerMJ WynaldaMA Cytochrome P450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes Drug Metab Dispos 1999 27 1334 40 Search in Google Scholar

Edwards DM, Pellizzoni C, Breuel HP, Berardi A, Castelli MG, Frigerio E, et al. Pharmacokinetics of reboxetine in healthy volunteers. Single oral doses, linearity and plasma protein binding. Biopharm Drug Dispos. 1995; 16:443–60. EdwardsDM PellizzoniC BreuelHP BerardiA CastelliMG FrigerioE Pharmacokinetics of reboxetine in healthy volunteers. Single oral doses, linearity and plasma protein binding Biopharm Drug Dispos 1995 16 443 60 10.1002/bdd.2510160603 Search in Google Scholar

Haustein KO. Bupropion: pharmacological and clinical profile in smoking cessation. Int J Clin Pharm Ther. 2003; 41:56–66. HausteinKO Bupropion: pharmacological and clinical profile in smoking cessation Int J Clin Pharm Ther 2003 41 56 66 10.5414/CPP41056 Search in Google Scholar

Fang QK, Han Z, Grover P, Kessler D, Senanayake CH, Wald SA. Rapid access to enantiopure bupropion and its major metabolite by stereospecific nucleophilic substitution on an α-ketotriflate. Tetrahedron. 2000; 11:3659–63. FangQK HanZ GroverP KesslerD SenanayakeCH WaldSA Rapid access to enantiopure bupropion and its major metabolite by stereospecific nucleophilic substitution on an α-ketotriflate Tetrahedron 2000 11 3659 63 10.1016/S0957-4166(00)00349-9 Search in Google Scholar

Kharasch ED, Mitchell D, Coles R. Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity. J Clin Pharmacol. 2008; 48:464–74. KharaschED MitchellD ColesR Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity J Clin Pharmacol 2008 48 464 74 10.1177/0091270008314254 Search in Google Scholar

Musso DL, Mehta NB, Soroko FE, Ferris RM, Hollingsworth EB, Kenney BT. Synthesis and evaluation of the antidepressant activity of the enantiomers of bupropion. Chirality. 1993; 5:495–500. MussoDL MehtaNB SorokoFE FerrisRM HollingsworthEB KenneyBT Synthesis and evaluation of the antidepressant activity of the enantiomers of bupropion Chirality 1993 5 495 500 10.1002/chir.530050704 Search in Google Scholar

Wang P-F, Neiner A, Kharasch ED. Stereoselective bupropion hydroxylation by cytochrome P450 CYP2B6 and cytochrome P450 oxidoreductase genetic variants. Drug Metab Dispos. 2020; 48:438–45. WangP-F NeinerA KharaschED Stereoselective bupropion hydroxylation by cytochrome P450 CYP2B6 and cytochrome P450 oxidoreductase genetic variants Drug Metab Dispos 2020 48 438 45 10.1124/dmd.119.090407 Search in Google Scholar

Johnston JA, Ascher J, Leadbetter R, Schmith VD, Patel DK, Durcan M, Bentley B. Pharmacokinetic optimisation of sustained-release bupropion for smoking cessation. Drugs. 2002; 62(Suppl 2):11–24. JohnstonJA AscherJ LeadbetterR SchmithVD PatelDK DurcanM BentleyB Pharmacokinetic optimisation of sustained-release bupropion for smoking cessation Drugs 2002 62 Suppl 2 11 24 10.2165/00003495-200262002-00002 Search in Google Scholar

Masters AR, Gufford BT, Lu JB, Metzger IF, Jones DR, Desta Z (2016) Chiral plasma pharmacokinetics and urinary excretion of bupropion and metabolites in healthy volunteers. J Pharmacol Exp Ther. 2016; 358:230–8. MastersAR GuffordBT LuJB MetzgerIF JonesDR DestaZ 2016 Chiral plasma pharmacokinetics and urinary excretion of bupropion and metabolites in healthy volunteers J Pharmacol Exp Ther 2016 358 230 8 10.1124/jpet.116.232876 Search in Google Scholar

Laizure SC, DeVane CL, Stewart JT, Dommisse CS, Lai AA. Pharmacokinetics of bupropion and its major basic metabolites in normal subjects after a single dose. Clin Pharmacol Ther. 1985; 38:586–9. LaizureSC DeVaneCL StewartJT DommisseCS LaiAA Pharmacokinetics of bupropion and its major basic metabolites in normal subjects after a single dose Clin Pharmacol Ther 1985 38 586 9 10.1038/clpt.1985.228 Search in Google Scholar

Suckow RF, Zhang MF, Cooper TB. Enantiomeric determination of the phenylmorpholinol metabolite of bupropion in human plasma using coupled achiral–chiral liquid chromatography. Biomed Chromatogr. 1997; 11:174–9. SuckowRF ZhangMF CooperTB Enantiomeric determination of the phenylmorpholinol metabolite of bupropion in human plasma using coupled achiral–chiral liquid chromatography Biomed Chromatogr 1997 11 174 9 10.1002/(SICI)1099-0801(199705)11:3<174::AID-BMC681>3.0.CO;2-E Search in Google Scholar

Joy MS, Frye RF, Stubbert K, Brouwer KR, Falk RJ, Kharasch ED. Use of enantiomeric bupropion and hydroxybupropion to assess CYP2B6 activity in glomerular kidney diseases. J Clin Pharmacol. 2010; 50:714–20. JoyMS FryeRF StubbertK BrouwerKR FalkRJ KharaschED Use of enantiomeric bupropion and hydroxybupropion to assess CYP2B6 activity in glomerular kidney diseases J Clin Pharmacol 2010 50 714 20 10.1177/0091270009353031 Search in Google Scholar

Hasegawa M, Matsubara K, Fukushima S, Maseda C, Uezono T, Kimura K. Stereoselective analyses of selegiline metabolites: possible urinary markers for selegiline therapy. Forensic Sci Int. 1999; 101:95–106. HasegawaM MatsubaraK FukushimaS MasedaC UezonoT KimuraK Stereoselective analyses of selegiline metabolites: possible urinary markers for selegiline therapy Forensic Sci Int 1999 101 95 106 10.1016/S0379-0738(99)00015-8 Search in Google Scholar

Taylor KM, Snyder SH. Amphetamine: differentiation by d and I isomers of behavior involving brain norepinephrine or dopamine. Science. 1970;168(3938):1487–9. TaylorKM SnyderSH Amphetamine: differentiation by d and I isomers of behavior involving brain norepinephrine or dopamine Science 1970 168 3938 1487 9 10.1126/science.168.3938.1487 Search in Google Scholar

Schoemaker H, Berendsen HH, Stevens HJ, Nickolson VJ. Differences in presynaptic α-blockade, noradrenaline uptake inhibition, and potential antidepressant activity between (+)- and (–)-mianserin. Psychopharmacology (Berl). 1981; 74:137–42. SchoemakerH BerendsenHH StevensHJ NickolsonVJ Differences in presynaptic α-blockade, noradrenaline uptake inhibition, and potential antidepressant activity between (+)- and (–)-mianserin Psychopharmacology (Berl) 1981 74 137 42 10.1007/BF00432680 Search in Google Scholar

Raiteri M, Maura G, Versace P. Functional evidence for two stereochemically different alpha-2 adrenoceptors regulating central norephinephrine and serotonin release. J Pharmacol Exp Ther. 1983; 224:679–84. RaiteriM MauraG VersaceP Functional evidence for two stereochemically different alpha-2 adrenoceptors regulating central norephinephrine and serotonin release J Pharmacol Exp Ther 1983 224 679 84 Search in Google Scholar

Wood MD, Thomas DR, Watkins CJ, Newberry NR. Stereoselective interaction of mianserin with 5-HT3 receptors. J Pharm Pharmacol. 1993; 45:711–4. WoodMD ThomasDR WatkinsCJ NewberryNR Stereoselective interaction of mianserin with 5-HT3 receptors J Pharm Pharmacol 1993 45 711 4 10.1111/j.2042-7158.1993.tb07094.x Search in Google Scholar

Kooyman AR, Zwart R, Vanderheijden PM, Van Hooft JA, Vijverberg HP. Interaction between enantiomers of mianserin and ORG3770 at 5-HT3 receptors in cultured mouse neuroblastoma cells. Neuropharmacology. 1994; 33:501–7. KooymanAR ZwartR VanderheijdenPM Van HooftJA VijverbergHP Interaction between enantiomers of mianserin and ORG3770 at 5-HT3 receptors in cultured mouse neuroblastoma cells Neuropharmacology 1994 33 501 7 10.1016/0028-3908(94)90081-7 Search in Google Scholar

Brogden RN, Heel RC, Speight TM, Avery GS. Mianserin: a review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs. 1978; 16:273–301. BrogdenRN HeelRC SpeightTM AveryGS Mianserin: a review of its pharmacological properties and therapeutic efficacy in depressive illness Drugs 1978 16 273 301 10.2165/00003495-197816040-00001 Search in Google Scholar

Pinder RM, van Delft AML. The potential therapeutic role of the enantiomers and metabolites of mianserin. Br J Clin Pharmacol. 1983; 15(Suppl 2):269S–76S. PinderRM van DelftAML The potential therapeutic role of the enantiomers and metabolites of mianserin Br J Clin Pharmacol 1983 15 Suppl 2 269S 76S 10.1111/j.1365-2125.1983.tb05875.x Search in Google Scholar

Pinder RM, van Delft AML. Pharmacological aspects of mianserin. Acta Psychiatr Scand Suppl. 1983; 302:59–71. PinderRM van DelftAML Pharmacological aspects of mianserin Acta Psychiatr Scand Suppl 1983 302 59 71 10.1111/j.1600-0447.1983.tb00359.x Search in Google Scholar

Heinig R, Blaschke G. In vivo and in vitro stereoselective metabolism of mianserin in mice. Arzneimittelforschung. [Drug Res.] 1993; 43:5–10. [in English, German abstract] HeinigR BlaschkeG In vivo and in vitro stereoselective metabolism of mianserin in mice. Arzneimittelforschung [Drug Res.] 1993 43 5 10 [in English, German abstract] Search in Google Scholar

Heinig R, Delbressine LP, Kaspersen FM, Blaschke G. Enantiomeric aspects of the metabolism of mianserin in rats. Arzneimittelforschung. [Drug Res.] 1993; 43:709–15. [in English, German abstract] HeinigR DelbressineLP KaspersenFM BlaschkeG Enantiomeric aspects of the metabolism of mianserin in rats. Arzneimittelforschung [Drug Res.] 1993 43 709 15 [in English, German abstract] Search in Google Scholar

Otani K, Sasa H, Kaneko S, Kondo T, Fukushima Y. Steady-state plasma concentrations of mianserin and its major active metabolite, desmethylmianserin. Ther Drug Monit. 1993; 15:113–7. OtaniK SasaH KanekoS KondoT FukushimaY Steady-state plasma concentrations of mianserin and its major active metabolite, desmethylmianserin Ther Drug Monit 1993 15 113 7 10.1097/00007691-199304000-00008 Search in Google Scholar

Lambert C, Park BK, Kitteringham NR. Activation of mianserin and its metabolites by human liver microsomes. Biochem Pharmacol. 1989; 38:2853–8. LambertC ParkBK KitteringhamNR Activation of mianserin and its metabolites by human liver microsomes Biochem Pharmacol 1989 38 2853 8 10.1016/0006-2952(89)90441-3 Search in Google Scholar

Eap CB, Powell K, Campus-Souche D, Monney C, Baettig D, Taeschner W, Baumann P. Determination of the enantiomers of mianserin, desmethylmianserin, and 8-hydroxymianserin in the plasma and urine of mianserin-treated patients. Chirality. 1994; 6:555–63. EapCB PowellK Campus-SoucheD MonneyC BaettigD TaeschnerW BaumannP Determination of the enantiomers of mianserin, desmethylmianserin, and 8-hydroxymianserin in the plasma and urine of mianserin-treated patients Chirality 1994 6 555 63 10.1002/chir.5300607087986669 Search in Google Scholar

Dahl ML, Tybring G, Elwin CE, Alm C, Andreasson K, Gyllenpalm M, Bertilsson L. Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism. Clin Pharmacol Ther. 1994; 56:176–83. DahlML TybringG ElwinCE AlmC AndreassonK GyllenpalmM BertilssonL Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism Clin Pharmacol Ther 1994 56 176 83 10.1038/clpt.1994.1218062494 Search in Google Scholar

Saveanu RV, Botros MSA, Thase ME. Mirtazapine. Ch 34.21. In: Sadock BJ, Sadock VA, Ruiz, P. (eds.) Kaplan and Sadock's comprehensive textbook of psychiatry. Vol. II, 10th ed. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins; 2017, p. 7940–50. SaveanuRV BotrosMSA ThaseME Mirtazapine. Ch 34.21 In: SadockBJ SadockVA RuizP. (eds.) Kaplan and Sadock's comprehensive textbook of psychiatry II 10th ed. Philadelphia Wolters Kluwer Lippincott Williams & Wilkins 2017 7940 50 Search in Google Scholar

de Boer T, Ruigt GSF. The selective α2-adrenoceptor antagonist mirtazapine (Org 3770) enhances noradrenergic and 5-HT1A mediated serotonergic neurotransmission. CNS Drugs. 1995; 4:29–38. de BoerT RuigtGSF The selective α2-adrenoceptor antagonist mirtazapine (Org 3770) enhances noradrenergic and 5-HT1A mediated serotonergic neurotransmission CNS Drugs 1995 4 29 38 10.2165/00023210-199500041-00006 Search in Google Scholar

Grasmäder K, Verwohlt PL, Kühn K-U, Dragicevic A, von Widdern O, Zobel A, et al. Population pharmacokinetic analysis of mirtazapine. Eur J Clin Pharmacol. 2004; 60:473–80. GrasmäderK VerwohltPL KühnK-U DragicevicA von WiddernO ZobelA Population pharmacokinetic analysis of mirtazapine Eur J Clin Pharmacol 2004 60 473 80 10.1007/s00228-004-0737-015289959 Search in Google Scholar

eISSN:
1875-855X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine