Otwarty dostęp

COVID-19 immunity and vaccines: what a pharmacist needs to know


Zacytuj

Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. Early release-high contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020; 26:1470–7. SancheS LinYT XuC Romero-SeversonE HengartnerN KeR Early release-high contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2 Emerg Infect Dis 2020 26 1470 7 10.3201/eid2607.200282732356232255761 Search in Google Scholar

Sohrabi C, Alsafi Z, O’Neil N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76:71–6. SohrabiC AlsafiZ O’NeilN KhanM KerwanA Al-JabirA World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19) Int J Surg 2020 76 71 6 10.1016/j.ijsu.2020.02.034710503232112977 Search in Google Scholar

de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14:523–34. de WitE van DoremalenN FalzaranoD MunsterVJ SARS and MERS: recent insights into emerging coronaviruses Nat Rev Microbiol 2016 14 523 34 10.1038/nrmicro.2016.81709782227344959 Search in Google Scholar

World Health Organization Coronavirus Disease (COVID-19) Dashboard [Internet]. Geneva: WHO; 2021 [cited 2021 Mar 24]. Available from: https://covid19.who.int World Health Organization Coronavirus Disease (COVID-19) Dashboard [Internet] Geneva WHO 2021 [cited 2021 Mar 24]. Available from: https://covid19.who.int Search in Google Scholar

Chou R, Dana T, Buckley DI, Selph S, Fu R, Totten AM. Epidemiology of and risk factors for coronavirus infection in health care workers: a living rapid review. Ann Intern Med. 2020; 173:120–36. ChouR DanaT BuckleyDI SelphS FuR TottenAM Epidemiology of and risk factors for coronavirus infection in health care workers: a living rapid review Ann Intern Med 2020 173 120 36 10.7326/M20-1632724084132369541 Search in Google Scholar

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020; 584(7820):257–61. FlaxmanS MishraS GandyA UnwinHJT MellanTA CouplandH Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe Nature 2020 584 7820 257 61 10.1038/s41586-020-2405-732512579 Search in Google Scholar

World Health Organization R&D Blueprint team. Draft landscape and tracker of COVID-19 candidate vaccines (database) [Internet]. Geneva: WHO; 2021 [cited 2021 March 24]. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines World Health Organization R&D Blueprint team Draft landscape and tracker of COVID-19 candidate vaccines (database) [Internet] Geneva WHO 2021 [cited 2021 March 24]. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines Search in Google Scholar

Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 vaccines at pandemic speed. N Engl J Med. 2020; 382:1969–73. LurieN SavilleM HatchettR HaltonJ Developing Covid-19 vaccines at pandemic speed N Engl J Med 2020 382 1969 73 10.1056/NEJMp200563032227757 Search in Google Scholar

Torreele E. The rush to create a covid-19 vaccine may do more harm than good. BMJ. 2020; 370:m3209. doi: 10.1136/bmj.m3209. TorreeleE The rush to create a covid-19 vaccine may do more harm than good BMJ 2020 370 m3209 10.1136/bmj.m3209 32816760 Open DOISearch in Google Scholar

Alderman C. Special pharmacy challenges for older people in difficult times. Sr Care Pharm. 2020; 35:108–9. AldermanC Special pharmacy challenges for older people in difficult times Sr Care Pharm 2020 35 108 9 10.4140/TCP.n.2020.10832070457 Search in Google Scholar

Soubeyrand B. [From vaccine manufacturing to its availability in pharmacy]. Rev Mal Respir. 2018; 35:1005–19. [French, English abstract] SoubeyrandB [From vaccine manufacturing to its availability in pharmacy] Rev Mal Respir 2018 35 1005 19 [French, English abstract] 10.1016/j.rmr.2018.07.00330266457 Search in Google Scholar

International Pharmaceutical Federation: an overview of current pharmacy impact on immunisation: a global report 2016. The Hague: FIP; 2016. International Pharmaceutical Federation: an overview of current pharmacy impact on immunisation: a global report 2016 The Hague FIP 2016 Search in Google Scholar

Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: a review. J Infect Public Health. 2020; 13:1619–29. ChowdhuryMA HossainN KashemMA ShahidMA AlamA Immune response in COVID-19: a review J Infect Public Health 2020 13 1619 29 10.1016/j.jiph.2020.07.001735980032718895 Search in Google Scholar

Van Vinh Chau N, Lam VT, Dung NT, Yen LM, Minh NNQ, Hung LM, et al.; Oxford University Clinical Research Unit COVID-19 Research Group. The natural history and transmission potential of asymptomatic SARS-CoV-2 infection. Clin Infect Dis. 2020; 71:2679–87. Van Vinh ChauN LamVT DungNT YenLM MinhNNQ HungLM Oxford University Clinical Research Unit COVID-19 Research Group The natural history and transmission potential of asymptomatic SARS-CoV-2 infection Clin Infect Dis 2020 71 2679 87 10.1101/2020.04.27.20082347 Search in Google Scholar

Poletti P, Tirani M, Cereda D, Trentini F, Guzzetta G, Sabatino G, et al.; ATS Lombardy COVID-19 Task Force. Association of age with likelihood of developing symptoms and critical disease among close contacts exposed to patients with confirmed SARS-CoV-2 infection in Italy. JAMA Netw Open. 2021; 4:e211085. doi: 10.1001/jamanetworkopen.2021.1085 PolettiP TiraniM CeredaD TrentiniF GuzzettaG SabatinoG ATS Lombardy COVID-19 Task Force Association of age with likelihood of developing symptoms and critical disease among close contacts exposed to patients with confirmed SARS-CoV-2 infection in Italy JAMA Netw Open 2021 4 e211085 10.1001/jamanetworkopen.2021.1085 Open DOISearch in Google Scholar

Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020; 26:1200–4. LongQ-X TangX-J ShiQ-L LiQ DengH-J YuanJ Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections Nat Med 2020 26 1200 4 10.1038/s41591-020-0965-6 Search in Google Scholar

Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020; 26:681–7. SungnakW HuangN BécavinC BergM QueenR LitvinukovaM SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes Nat Med 2020 26 681 7 10.1038/s41591-020-0868-6 Search in Google Scholar

Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14:185–92. ZouX ChenK ZouJ HanP HaoJ HanZ Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection Front Med 2020 14 185 92 10.1007/s11684-020-0754-0 Search in Google Scholar

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38:1–9. PrompetcharaE KetloyC PalagaT Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic Asian Pac J Allergy Immunol 2020 38 1 9 Search in Google Scholar

Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020; 20:355–62. MeradM MartinJC Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages Nat Rev Immunol 2020 20 355 62 10.1038/s41577-020-0331-4 Search in Google Scholar

Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181:1036–45.e9 Blanco-MeloD Nilsson-PayantBE LiuW-C UhlS HoaglandD MøllerR Imbalanced host response to SARS-CoV-2 drives development of COVID-19 Cell 2020 181 1036 45.e9 10.1016/j.cell.2020.04.026 Search in Google Scholar

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054–62. ZhouF YuT DuR FanG LiuY LiuZ Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study Lancet 2020 395 10229 1054 62 10.1016/S0140-6736(20)30566-3 Search in Google Scholar

Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung S-M, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clinl Med. 2020; 9:538. doi: 10.3390/jcm9020538 LintonNM KobayashiT YangY HayashiK AkhmetzhanovAR JungS-M Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data J Clinl Med 2020 9 538 10.3390/jcm9020538707419732079150 Open DOISearch in Google Scholar

Ni L, Ye F, Cheng M-L, Feng Y, Deng Y-Q, Zhao H, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020; 52:971–7. NiL YeF ChengM-L FengY DengY-Q ZhaoH Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals Immunity 2020 52 971 7 10.1016/j.immuni.2020.04.023719642432413330 Search in Google Scholar

Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020; 181:1489–1501. GrifoniA WeiskopfD RamirezSI MateusJ DanJM ModerbacherCR Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals Cell 2020 181 1489 1501 10.1016/j.cell.2020.05.015 Search in Google Scholar

Seow J, Graham C, Merrick B, Acors S, Pickering S, Steel KJA, et al. Longitudinal evaluation and decline of antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020; 5:1598–607. SeowJ GrahamC MerrickB AcorsS PickeringS SteelKJA Longitudinal evaluation and decline of antibody responses in the three months following SARS-CoV-2 infection in humans Nat Microbiol 2020 5 1598 607 10.1038/s41564-020-00813-8 Search in Google Scholar

Pollock AM, Lancaster J. Asymptomatic transmission of covid-19. BMJ. 2020; 371:m4851. doi: 10.1136/bmj.m4851 PollockAM LancasterJ Asymptomatic transmission of covid-19 BMJ 2020 371 m4851 10.1136/bmj.m4851 Open DOISearch in Google Scholar

Ip DKM, Lau LLH, Leung NHL, Fang VJ, Chan K-H, Chu DKW, et al. Viral shedding and transmission potential of asymptomatic and paucisymptomatic influenza virus infections in the community. Clin Infect Dis. 2017; 64:736–42. IpDKM LauLLH LeungNHL FangVJ ChanK-H ChuDKW Viral shedding and transmission potential of asymptomatic and paucisymptomatic influenza virus infections in the community Clin Infect Dis 2017 64 736 42 Search in Google Scholar

Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181:281–92.e6. WallsAC ParkY-J TortoriciMA WallA McGuireAT VeeslerD Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein Cell 2020 181 281 92.e6 10.1016/j.cell.2020.02.058 Search in Google Scholar

To KK-W, Tsang OT-Y, Leung W-S, Tam AR, Wu T-C, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020; 20:565–74. ToKK-W TsangOT-Y LeungW-S TamAR WuT-C LungDC Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study Lancet Infect Dis 2020 20 565 74 10.1016/S1473-3099(20)30196-1 Search in Google Scholar

Sariol A, Perlman S. Lessons for COVID-19 immunity from other coronavirus infections. Immunity. 2020; 53:248–63. SariolA PerlmanS Lessons for COVID-19 immunity from other coronavirus infections Immunity 2020 53 248 63 10.1016/j.immuni.2020.07.005735978732717182 Search in Google Scholar

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LF. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20:363–74. TayMZ PohCM RéniaL MacAryPA NgLF The trinity of COVID-19: immunity, inflammation and intervention Nat Rev Immunol 2020 20 363 74 10.1038/s41577-020-0311-8718767232346093 Search in Google Scholar

Chen K, Kolls JK. T Cell–mediated host immune defenses in the lung. Annu Rev Immunol. 2013; 31:605–33. ChenK KollsJK T Cell–mediated host immune defenses in the lung Annu Rev Immunol 2013 31 605 33 10.1146/annurev-immunol-032712-100019391256223516986 Search in Google Scholar

Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott MK, Wimmers F, et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med. 2020; 26:932–40. ArunachalamPS CharlesTP JoagV BollimpelliVS ScottMK WimmersF T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers Nat Med 2020 26 932 40 10.1038/s41591-020-0858-8730301432393800 Search in Google Scholar

Moderbacher CR, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020. 183:996–1012.e19. ModerbacherCR RamirezSI DanJM GrifoniA HastieKM WeiskopfD Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity Cell 2020 183 996 1012.e19 10.1016/j.cell.2020.09.038749427033010815 Search in Google Scholar

Remy KE, Mazer M, Striker DA, Ellebedy AH, Walton AH, Unsinger J, et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020; 5:e140329. doi: 10.1172/jci.insight.140329 RemyKE MazerM StrikerDA EllebedyAH WaltonAH UnsingerJ Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections JCI Insight 2020 5 e140329 10.1172/jci.insight.140329 752644132687484 Open DOISearch in Google Scholar

Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, Meyerholz DK, et al. Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity. 2016; 44:1379–91. ZhaoJ ZhaoJ MangalamAK ChannappanavarR FettC MeyerholzDK Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses Immunity 2016 44 1379 91 10.1016/j.immuni.2016.05.006491744227287409 Search in Google Scholar

Janice Oh H-L, Ken-En Gan S, Bertoletti A, Tan Y-J. Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect. 2012;1:e23. doi: 10.1038/emi.2012.26 Janice OhH-L Ken-En GanS BertolettiA TanY-J Understanding the T cell immune response in SARS coronavirus infection Emerg Microbes Infect 2012 1 e23 10.1038/emi.2012.26363642426038429 Open DOISearch in Google Scholar

Haq K, McElhaney JE. Immunosenescence: influenza vaccination and the elderly. Curr Opin Immunol. 2014; 29:38–42. HaqK McElhaneyJE Immunosenescence: influenza vaccination and the elderly Curr Opin Immunol 2014 29 38 42 10.1016/j.coi.2014.03.00824769424 Search in Google Scholar

Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020; 587(7833):270–4. BraunJ LoyalL FrentschM WendischD GeorgP KurthF SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19 Nature 2020 587 7833 270 4 10.1038/s41586-020-2598-932726801 Search in Google Scholar

Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 2020; 20:615–32. JeyanathanM AfkhamiS SmaillF MillerMS LichtyBD XingZ Immunological considerations for COVID-19 vaccine strategies Nat Rev Immunol 2020 20 615 32 10.1038/s41577-020-00434-6747268232887954 Search in Google Scholar

Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K, Collins PL. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A. 2004; 101:9804–9. BuchholzUJ BukreyevA YangL LamirandeEW MurphyBR SubbaraoK CollinsPL Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity Proc Natl Acad Sci U S A 2004 101 9804 9 10.1073/pnas.040349210147075515210961 Search in Google Scholar

Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Front Immunol. 2018; 9:1963. doi: 10.3389/fimmu.2018.01963 RauchS JasnyE SchmidtKE PetschB New vaccine technologies to combat outbreak situations Front Immunol 2018 9 1963 10.3389/fimmu.2018.01963615654030283434 Open DOISearch in Google Scholar

Jeyanathan M, Yao Y, Afkhami S, Smaill F, Xing Z. New tuberculosis vaccine strategies: taking aim at un-natural immunity. Trends Immunol. 2018; 39:419–33. JeyanathanM YaoY AfkhamiS SmaillF XingZ New tuberculosis vaccine strategies: taking aim at un-natural immunity Trends Immunol 2018 39 419 33 10.1016/j.it.2018.01.00629429859 Search in Google Scholar

Afkhami S, Yao Y, Xing Z. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol Ther Meth Clin Dev. 2016; 3:16030. doi: 10.1038/mtm.2016.30 AfkhamiS YaoY XingZ Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens Mol Ther Meth Clin Dev 2016 3 16030 10.1038/mtm.2016.30484755527162933 Open DOISearch in Google Scholar

Szabo PA, Miron M, Farber DL. Location, location, location: tissue resident memory T cells in mice and humans. Sci Immunol. 2019; 4:eaas9673. doi: 10.1126/sciimmunol.aas9673 SzaboPA MironM FarberDL Location, location, location: tissue resident memory T cells in mice and humans Sci Immunol 2019 4 eaas9673 10.1126/sciimmunol.aas9673677848230952804 Open DOISearch in Google Scholar

Wouters-Wesseling W, Rozendaal M, Snijder M, Graus Y, Rimmelzwaan G, de Groot L, Bindels J. Effect of a complete nutritional supplement on antibody response to influenza vaccine in elderly people. J Gerontol A Biol Sci Med Sci. 2002; 57:M563–6. Wouters-WesselingW RozendaalM SnijderM GrausY RimmelzwaanG de GrootL BindelsJ Effect of a complete nutritional supplement on antibody response to influenza vaccine in elderly people J Gerontol A Biol Sci Med Sci 2002 57 M563 6 10.1093/gerona/57.9.M56312196491 Search in Google Scholar

Ventura MT, Casciaro M, Gangemi S, Buquicchio R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Aller. 2017; 15:21. doi: 10.1186/s12948-017-0077-0 VenturaMT CasciaroM GangemiS BuquicchioR Immunosenescence in aging: between immune cells depletion and cytokines up-regulation Clin Mol Aller 2017 15 21 10.1186/s12948-017-0077-0573109429259496 Open DOISearch in Google Scholar

Savy M, Edmond K, Fine PE, Hall A, Hennig BJ, Moore SE, et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J Nutr. 2009; 139:2154S–218S. SavyM EdmondK FinePE HallA HennigBJ MooreSE Landscape analysis of interactions between nutrition and vaccine responses in children J Nutr 2009 139 2154S 218S 10.3945/jn.109.10531219793845 Search in Google Scholar

Arvas A. Vaccination in patients with immunosuppression. Turk Pediatri Ars. 2014; 49:181–5. ArvasA Vaccination in patients with immunosuppression Turk Pediatri Ars 2014 49 181 5 10.5152/tpa.2014.2206446229326078660 Search in Google Scholar

Keusch GT. Nutritional effects on response of children in developing countries to respiratory tract pathogens: implications for vaccine development. Rev Infect Dis. 1991; 13(Suppl 6):S486–91. KeuschGT Nutritional effects on response of children in developing countries to respiratory tract pathogens: implications for vaccine development Rev Infect Dis 1991 13 Suppl 6 S486 91 10.1093/clinids/13.Supplement_6.S4861907399 Search in Google Scholar

Opal SM, Girard TD, Ely EW. The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis. 2005; 41:S504–12. OpalSM GirardTD ElyEW The immunopathogenesis of sepsis in elderly patients Clin Infect Dis 2005 41 S504 12 10.1086/43200716237654 Search in Google Scholar

Eliakim A, Swindt C, Zaldivar F, Casali P, Cooper DM. Reduced tetanus antibody titers in overweight children. Autoimmunity. 2006; 39:137–41. EliakimA SwindtC ZaldivarF CasaliP CooperDM Reduced tetanus antibody titers in overweight children Autoimmunity 2006 39 137 41 10.1080/08916930600597326462357316698670 Search in Google Scholar

Călina D, Roșu L, Roșu AF, Ianoşi G, Ianoşi S, Zlatian O, et al. Etiological diagnosis and pharmacotherapeutic management of parapneumonic pleurisy. Farmacia. 2016; 64:946–52. CălinaD RoșuL RoșuAF IanoşiG IanoşiS ZlatianO Etiological diagnosis and pharmacotherapeutic management of parapneumonic pleurisy Farmacia 2016 64 946 52 Search in Google Scholar

DeStefano F, Bodenstab HM, Offit PA. Principal controversies in vaccine safety in the United States. Clin Infect Dis. 2019; 69:726–31. DeStefanoF BodenstabHM OffitPA Principal controversies in vaccine safety in the United States Clin Infect Dis 2019 69 726 31 10.1093/cid/ciz13530753348 Search in Google Scholar

Plotkin S, Robinson JM, Cunningham G, Iqbal R, Larsen S. The complexity and cost of vaccine manufacturing – an overview. Vaccine. 2017; 35:4064–71. PlotkinS RobinsonJM CunninghamG IqbalR LarsenS The complexity and cost of vaccine manufacturing – an overview Vaccine 2017 35 4064 71 10.1016/j.vaccine.2017.06.003551873428647170 Search in Google Scholar

Pronker ES, Weenen TC, Commandeur H, Claassen EHJH, Osterhaus ADME. Risk in vaccine research and development quantified. PloS One. 2013; 8:e57755. doi: 10.1371/journal.pone.0057755 PronkerES WeenenTC CommandeurH ClaassenEHJH OsterhausADME Risk in vaccine research and development quantified PloS One 2013 8 e57755 10.1371/journal.pone.0057755360398723526951 Open DOISearch in Google Scholar

Goetz KB, Pfleiderer M, Schneider CK: First-in-human clinical trials with vaccines—what regulators want. Nat Biotechnol. 2010; 28:910–6. GoetzKB PfleidererM SchneiderCK First-in-human clinical trials with vaccines—what regulators want Nat Biotechnol 2010 28 910 6 10.1038/nbt0910-910709678120829825 Search in Google Scholar

Guerra Mendoza Y, Garric E, Leach A, Lievens M, Ofori-Anyinam O, Pirçon J-Y, et al. Safety profile of the RTS, S/AS01 malaria vaccine in infants and children: additional data from a phase III randomized controlled trial in sub-Saharan Africa. Hum Vaccin Immunother. 2019; 15:2386–98. Guerra MendozaY GarricE LeachA LievensM Ofori-AnyinamO PirçonJ-Y Safety profile of the RTS, S/AS01 malaria vaccine in infants and children: additional data from a phase III randomized controlled trial in sub-Saharan Africa Hum Vaccin Immunother 2019 15 2386 98 10.1080/21645515.2019.1586040681638431012786 Search in Google Scholar

Peeples L. News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc Natl Acad Sci U S A. 2020; 117:8218–21. PeeplesL News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine Proc Natl Acad Sci U S A 2020 117 8218 21 10.1073/pnas.2005456117716547032229574 Search in Google Scholar

Grenham A, Villafana T. Vaccine development and trials in low and lower-middle income countries: key issues, advances and future opportunities. Hum Vaccin Immunother. 2017; 13:2192–9. GrenhamA VillafanaT Vaccine development and trials in low and lower-middle income countries: key issues, advances and future opportunities Hum Vaccin Immunother 2017 13 2192 9 10.1080/21645515.2017.1356495561755328758824 Search in Google Scholar

Almazán F, DeDiego ML, Sola I, Zuñiga S, Nieto-Torres JL, Marquez-Jurado S, Andrés G, Enjuanes L: Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. mBio. 2013; 4:e00650–13. doi: 10.1128/mBio.00650-13 AlmazánF DeDiegoML SolaI ZuñigaS Nieto-TorresJL Marquez-JuradoS AndrésG EnjuanesL Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate mBio 2013 4 e00650 13 10.1128/mBio.00650-13377419224023385 Open DOISearch in Google Scholar

Hou Y, Meulia T, Gao X, Saif LJ, Wang Q. Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs. J Virol. 2019; 93:e01758–18. doi: 10.1128/JVI.01758-18 HouY MeuliaT GaoX SaifLJ WangQ Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs J Virol 2019 93 e01758 18 10.1128/JVI.01758-18632191330404797 Open DOISearch in Google Scholar

Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog. 2015; 11:e1005215. doi: 10.1371/journal.ppat.1005215 Jimenez-GuardeñoJM Regla-NavaJA Nieto-TorresJL DeDiegoML Castaño-RodriguezC Fernandez-DelgadoR Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine PLoS Pathog 2015 11 e1005215 10.1371/journal.ppat.1005215462611226513244 Open DOISearch in Google Scholar

Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol. 2017; 91:e01953–16. doi: 10.1128/JVI.01953-16 TaoY ShiM ChommanardC QueenK ZhangJ MarkotterW Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history J Virol 2017 91 e01953 16 10.1128/JVI.01953-16530995828077633 Open DOISearch in Google Scholar

ul Qamar MT, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S. Epitope-based peptide vaccine design and target site depiction against Middle East respiratory syndrome coronavirus: an immune-informatics study. J Transl Med. 2019; 17:362. doi: 10.1186/s12967-019-2116-8 ul QamarMT SaleemS AshfaqUA BariA AnwarF AlqahtaniS Epitope-based peptide vaccine design and target site depiction against Middle East respiratory syndrome coronavirus: an immune-informatics study J Transl Med 2019 17 362 10.1186/s12967-019-2116-8683906531703698 Open DOISearch in Google Scholar

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020; 369(6501):330–3. WatanabeY AllenJD WrappD McLellanJS CrispinM Site-specific glycan analysis of the SARS-CoV-2 spike Science 2020 369 6501 330 3 10.1126/science.abb9983 Search in Google Scholar

Murdin AD, Barreto L, Plotkin S. Inactivated poliovirus vaccine: past and present experience. Vaccine. 1996; 14:735–46. MurdinAD BarretoL PlotkinS Inactivated poliovirus vaccine: past and present experience Vaccine 1996 14 735 46 10.1016/0264-410X(95)00211-I Search in Google Scholar

Vellozzi C, Burwen DR, Dobardzic A, Ball R, Walton K, Haber P. Safety of trivalent inactivated influenza vaccines in adults: background for pandemic influenza vaccine safety monitoring. Vaccine. 2009; 27:2114–20. VellozziC BurwenDR DobardzicA BallR WaltonK HaberP Safety of trivalent inactivated influenza vaccines in adults: background for pandemic influenza vaccine safety monitoring Vaccine 2009 27 2114 20 10.1016/j.vaccine.2009.01.125 Search in Google Scholar

Wood JM, Robertson JS. From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol. 2004; 2:842–7. WoodJM RobertsonJS From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza Nat Rev Microbiol 2004 2 842 7 10.1038/nrmicro979 Search in Google Scholar

Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020; 182:713–21. WangH ZhangY HuangB DengW QuanY WangW XuW ZhaoY LiN ZhangJ Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2 Cell 2020 182 713 21 10.1016/j.cell.2020.06.008 Search in Google Scholar

Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020; 369(6499):77–81. GaoQ BaoL MaoH WangL XuK YangM Development of an inactivated vaccine candidate for SARS-CoV-2 Science 2020 369 6499 77 81 10.1126/science.abc1932 Search in Google Scholar

Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA. 2020; 324:951–60. XiaS DuanK ZhangY ZhaoD ZhangH XieZ Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials JAMA 2020 324 951 60 10.1001/jama.2020.15543 Search in Google Scholar

Brennan Z, Paun C, Ehley B, Hilton J, Turcotte M, Morello L. The vaccines that could stop Covid-19 [Internet]. Arlington, VA: Politico; 2021 [cited 2021 March 24]. Available from: https://www.politico.com/interactives/2020/coronavirus-vaccine-tracker/ BrennanZ PaunC EhleyB HiltonJ TurcotteM MorelloL The vaccines that could stop Covid-19 [Internet] Arlington, VA Politico 2021 [cited 2021 March 24]. Available from: https://www.politico.com/interactives/2020/coronavirus-vaccine-tracker/ Search in Google Scholar

Zeng L. Mucosal adjuvants: opportunities and challenges. Hum Vaccin Immunother. 2016; 12:2456–8. ZengL Mucosal adjuvants: opportunities and challenges Hum Vaccin Immunother 2016 12 2456 8 10.1080/21645515.2016.1181236 Search in Google Scholar

Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395(10240):1845–54. ZhuF-C LiY-H GuanX-H HouL-H WangW-J LiJ-X Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial Lancet 2020 395 10240 1845 54 10.1016/S0140-6736(20)31208-3 Search in Google Scholar

Zhang S, Huang W, Zhou X, Zhao Q, Wang Q, Jia B. Seroprevalence of neutralizing antibodies to human adenoviruses type-5 and type-26 and chimpanzee adenovirus type-68 in healthy Chinese adults. J Med Virol. 2013; 85:1077–84. ZhangS HuangW ZhouX ZhaoQ WangQ JiaB Seroprevalence of neutralizing antibodies to human adenoviruses type-5 and type-26 and chimpanzee adenovirus type-68 in healthy Chinese adults J Med Virol 2013 85 1077 84 10.1002/jmv.2354623588735 Search in Google Scholar

National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. Different COVID-19 vaccines [Internet]. Atlanta, GA: Centers for Disease Control and Prevention. U.S. Department of Health & Human Services; 2021 [cited 2021 March 24]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases Different COVID-19 vaccines [Internet] Atlanta, GA Centers for Disease Control and Prevention. U.S. Department of Health & Human Services 2021 [cited 2021 March 24]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html Search in Google Scholar

Corbett KS, Edwards D, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020; 586(7830):567–71. CorbettKS EdwardsD LeistSR AbionaOM Boyoglu-BarnumS GillespieRA SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness Nature 2020 586 7830 567 71 10.1038/s41586-020-2622-0 Search in Google Scholar

Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020; 383:2427–38. AndersonEJ RouphaelNG WidgeAT JacksonLA RobertsPC MakheneM Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults N Engl J Med 2020 383 2427 38 10.1056/NEJMoa2028436 Search in Google Scholar

Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020; 383:2439–50. WalshEE FrenckRWJr FalseyAR KitchinN AbsalonJ GurtmanA Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates N Engl J Med 2020 383 2439 50 10.1056/NEJMoa2027906 Search in Google Scholar

Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020: 586(7830):589–93. MulliganMJ LykeKE KitchinN AbsalonJ GurtmanA LockhartS Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults Nature 2020 586 7830 589 93 10.1038/s41586-020-2639-4 Search in Google Scholar

Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 and TH1 T cell responses. Nature. 2020; 586(7830):594–9. SahinU MuikA DerhovanessianE COVID-19 vaccine BNT162b1 and TH1 T cell responses Nature 2020 586 7830 594 9 10.1038/s41586-020-2814-7 Search in Google Scholar

Del Giudice G, Rappuoli R, Didierlaurent AM: Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018; 39:14–21. Del GiudiceG RappuoliR DidierlaurentAM Correlates of adjuvanticity: a review on adjuvants in licensed vaccines Semin Immunol 2018 39 14 21 10.1016/j.smim.2018.05.001 Search in Google Scholar

HogenEsch H, O’Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines. 2018; 3:51. doi: 10.1038/s41541-018-0089-x HogenEschH O’HaganDT FoxCB Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want NPJ Vaccines 2018 3 51 10.1038/s41541-018-0089-x Open DOISearch in Google Scholar

Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunol. 2018; 153:1–9. HumphreysIR SebastianS Novel viral vectors in infectious diseases Immunol 2018 153 1 9 10.1111/imm.12829 Search in Google Scholar

Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol. 2010; 8:62–73. DraperSJ HeeneyJL Viruses as vaccine vectors for infectious diseases and cancer Nat Rev Microbiol 2010 8 62 73 10.1038/nrmicro2240 Search in Google Scholar

Buchbinder SP, McElrath MJ, Dieffenbach C, Corey L. Use of adenovirus type-5 vectored vaccines: a cautionary tale. Lancet. 2020; 396(10260):e68–9. doi: 10.1016/S0140-6736(20)32156-5. BuchbinderSP McElrathMJ DieffenbachC CoreyL Use of adenovirus type-5 vectored vaccines: a cautionary tale Lancet 2020 396 10260 e68 9 10.1016/S0140-6736(20)32156-5 Open DOISearch in Google Scholar

Colloca S, Barnes E, Folgori A, Ammendola V, Capone S, Cirillo A, et al. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci Transl Med. 2012; 4:115ra2. doi: 10.1126/scitranslmed.3002925 CollocaS BarnesE FolgoriA AmmendolaV CaponeS CirilloA Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species Sci Transl Med 2012 4 115ra2 10.1126/scitranslmed.3002925 Open DOISearch in Google Scholar

Baden LR, Walsh SR, Seaman MS, Tucker RP, Krause KH, Patel A, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J Infect Dis. 2013; 207:240–7. BadenLR WalshSR SeamanMS TuckerRP KrauseKH PatelA First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001) J Infect Dis 2013 207 240 7 10.1093/infdis/jis670 Search in Google Scholar

Anywaine Z, Whitworth H, Kaleebu P, Praygod G, Shukarev G, Manno D, Kapiga S, Grosskurth H, Kalluvya S, Bockstal V: Safety and immunogenicity of a 2-dose heterologous vaccination regimen with Ad26.ZEBOV and MVA-BN-Filo Ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Uganda and Tanzania. J Infect Dis. 2019; 220:46–56. AnywaineZ WhitworthH KaleebuP PraygodG ShukarevG MannoD KapigaS GrosskurthH KalluvyaS BockstalV Safety and immunogenicity of a 2-dose heterologous vaccination regimen with Ad26.ZEBOV and MVA-BN-Filo Ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Uganda and Tanzania J Infect Dis 2019 220 46 56 10.1093/infdis/jiz070 Search in Google Scholar

Mercado N, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020; 586(7830):583–8. MercadoN ZahnR WegmannF LoosC ChandrashekarA YuJ Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques Nature 2020 586 7830 583 8 10.1038/s41586-020-2607-z Search in Google Scholar

Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020; 396:467–78. FolegattiPM EwerKJ AleyPK AngusB BeckerS Belij-RammerstorferS Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial Lancet 2020 396 467 78 10.1016/S0140-6736(20)31604-4 Search in Google Scholar

Wise J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots BMJ. 2021; 372:n699. doi: 10.1136/bmj.n699 WiseJ Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots BMJ 2021 372 n699 10.1136/bmj.n699 Open DOISearch in Google Scholar

van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020; 586(7830):578–82. van DoremalenN LambeT SpencerA Belij-RammerstorferS PurushothamJN PortJR ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques Nature 2020 586 7830 578 82 10.1101/2020.05.13.093195 Search in Google Scholar

Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!) Lancet. 2017; 389(10068): 505–18. Henao-RestrepoAM CamachoA LonginiIM WatsonCH EdmundsWJ EggerM Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!) Lancet 2017 389 10068 505 18 10.1016/S0140-6736(16)32621-6 Search in Google Scholar

Case JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Smith BK, et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe. 2020; 28:465–74.e4. CaseJB RothlaufPW ChenRE KafaiNM FoxJM SmithBK Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice Cell Host Microbe 2020 28 465 74.e4 10.1016/j.chom.2020.07.018739195132798445 Search in Google Scholar

Yahalom-Ronen Y, Tamir H, Melamed S, Politi B, Shifman O, Achdout H, et al. A single dose of recombinant VSV-ΔG-spike vaccine provides protection against SARS-CoV-2 challenge. Nat Commun. 2020; 11:6402. doi: 10.1038/s41467-020-20228-7 Yahalom-RonenY TamirH MelamedS PolitiB ShifmanO AchdoutH A single dose of recombinant VSV-ΔG-spike vaccine provides protection against SARS-CoV-2 challenge Nat Commun 2020 11 6402 10.1038/s41467-020-20228-7774503333328475 Open DOISearch in Google Scholar

Mou H, Raj VS, Van Kuppeveld FJ, Rottier PJ, Haagmans BL, Bosch BJ. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol. 2013; 87:9379–83. MouH RajVS Van KuppeveldFJ RottierPJ HaagmansBL BoschBJ The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies J Virol 2013 87 9379 83 10.1128/JVI.01277-13375406823785207 Search in Google Scholar

Guo Y, Sun S, Wang K, Zhang S, Zhu W, Chen Z. Elicitation of immunity in mice after immunization with the S2 subunit of the severe acute respiratory syndrome coronavirus. DNA Cell Biol. 2005; 24:510–5. GuoY SunS WangK ZhangS ZhuW ChenZ Elicitation of immunity in mice after immunization with the S2 subunit of the severe acute respiratory syndrome coronavirus DNA Cell Biol 2005 24 510 5 10.1089/dna.2005.24.51016101349 Search in Google Scholar

Zhou Y, Jiang S, Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines. 2018; 17:677–86. ZhouY JiangS DuL Prospects for a MERS-CoV spike vaccine Expert Rev. Vaccines 2018 17 677 86 10.1080/14760584.2018.1506702635546130058403 Search in Google Scholar

Oscherwitz J. The promise and challenge of epitope-focused vaccines. Hum Vaccin Immunother. 2016; 12:2113–6. OscherwitzJ The promise and challenge of epitope-focused vaccines Hum Vaccin Immunother 2016 12 2113 6 10.1080/21645515.2016.1160977499472627058686 Search in Google Scholar

Du L, Zhao G, Chan CCS, Sun S, Chen M, Liu Z, et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect, and E. coli cells elicits potent neutralizing antibody and protective immunity. Virology. 2009; 393:144–50. DuL ZhaoG ChanCCS SunS ChenM LiuZ Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect, and E. coli cells elicits potent neutralizing antibody and protective immunity Virology 2009 393 144 50 10.1016/j.virol.2009.07.018275373619683779 Search in Google Scholar

Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011; 85:12201–15. BollesM DemingD LongK AgnihothramS WhitmoreA FerrisM A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge J Virol 2011 85 12201 15 10.1128/JVI.06048-11320934721937658 Search in Google Scholar

Diamond MS, Pierson TC. The challenges of vaccine development against a new virus during a pandemic. Cell Host Microbe. 2020; 27:699–703. DiamondMS PiersonTC The challenges of vaccine development against a new virus during a pandemic Cell Host Microbe 2020 27 699 703 10.1016/j.chom.2020.04.021721939732407708 Search in Google Scholar

Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines. 2018; 17:833–49. DonaldsonB LateefZ WalkerGF YoungSL WardVK Virus-like particle vaccines: immunology and formulation for clinical translation Expert Rev Vaccines 2018 17 833 49 10.1080/14760584.2018.1516552710373430173619 Search in Google Scholar

Lu X, Chen Y, Bai B, Hu H, Tao L, Yang J, et al. Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice. Immunol. 2007; 122:496–502. LuX ChenY BaiB HuH TaoL YangJ Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice Immunol 2007 122 496 502 10.1111/j.1365-2567.2007.02676.x226603617680799 Search in Google Scholar

Lokugamage KG, Yoshikawa-Iwata N, Ito N, Watts DM, Wyde PR, Wang N, et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine. 2008; 26:797–808. LokugamageKG Yoshikawa-IwataN ItoN WattsDM WydePR WangN Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV Vaccine 2008 26 797 808 10.1016/j.vaccine.2007.11.092226776118191004 Search in Google Scholar

Naskalska A, Dabrowska A, Nowak P, Szczepanski A, Jasik K, Milewska A, et al. Novel coronavirus-like particles targeting cells lining the respiratory tract. PloS One. 2018; 13:e0203489. doi: 10.1371/journal.pone.0203489 NaskalskaA DabrowskaA NowakP SzczepanskiA JasikK MilewskaA Novel coronavirus-like particles targeting cells lining the respiratory tract PloS One 2018 13 e0203489 10.1371/journal.pone.0203489 Open DOISearch in Google Scholar

Business Wire. Medicago announces positive results in animal trials for its vaccine candidate against COVID-19 [Internet]. San Francisco, CA: Berkshire Hathaway [cited 2021 March 24]. Available from: https://www.businesswire.com/news/home/20200514005745/en/Medicago-Announces-Positive-Results-in-Animal-Trials-for-Its-Vaccine-Candidate-Against-COVID-19 Business Wire Medicago announces positive results in animal trials for its vaccine candidate against COVID-19 [Internet] San Francisco, CA Berkshire Hathaway [cited 2021 March 24]. Available from: https://www.businesswire.com/news/home/20200514005745/en/Medicago-Announces-Positive-Results-in-Animal-Trials-for-Its-Vaccine-Candidate-Against-COVID-19 Search in Google Scholar

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018; 17:261–79. PardiN HoganMJ PorterFW WeissmanD mRNA vaccines—a new era in vaccinology Nat Rev Drug Discov 2018 17 261 79 10.1038/nrd.2017.243 Search in Google Scholar

Lutz J, Lazzaro S, Habbeddine M, Schmidt KE, Baumhof P, Mui BL, et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ vaccines. 2017; 2:29. doi: 10.1038/s41541-017-0032-6 LutzJ LazzaroS HabbeddineM SchmidtKE BaumhofP MuiBL Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines NPJ vaccines 2017 2 29 10.1038/s41541-017-0032-6 Open DOISearch in Google Scholar

Hobernik D, Bros M. DNA vaccines—how far from clinical use? Int J Mol Sci. 2018; 19:3605. doi: 10.3390/ijms19113605 HobernikD BrosM DNA vaccines—how far from clinical use? Int J Mol Sci 2018 19 3605 10.3390/ijms19113605 Open DOISearch in Google Scholar

Smith TR, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020; 11:2601. doi: 10.1038/s41467-020-16505-0. SmithTR PatelA RamosS ElwoodD ZhuX YanJ Immunogenicity of a DNA vaccine candidate for COVID-19 Nat Commun 2020 11 2601 10.1038/s41467-020-16505-0 Open DOISearch in Google Scholar

Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020; 369(6505): 806–11. YuJ TostanoskiLH PeterL MercadoNB McMahanK MahrokhianSH DNA vaccine protection against SARS-CoV-2 in rhesus macaques Science 2020 369 6505 806 11 10.1126/science.abc6284 Search in Google Scholar

Joint Committee on Vaccination and Immunisation: advice on priority groups for coronavirus (COVID-19) vaccination, 30 December 2020 [Internet]. London: Department of Health & Social Care, UK Government. Contains public sector information licensed under the Open Government Licence v3.0; Crown, United Kingdom; 2020 [cited 2021 March 24]. Available from: https://www.gov.uk/government/publications/priority-groups-for-coronavirus-covid-19-vaccination-advice-from-the-jcvi-30-december-2020/joint-committee-on-vaccination-and-immunisation-advice-on-priority-groups-for-covid-19-vaccination-30-december-2020 Joint Committee on Vaccination and Immunisation: advice on priority groups for coronavirus (COVID-19) vaccination, 30 December 2020 [Internet] London Department of Health & Social Care, UK Government Contains public sector information licensed under the Open Government Licence v3.0; Crown, United Kingdom; 2020 [cited 2021 March 24]. Available from: https://www.gov.uk/government/publications/priority-groups-for-coronavirus-covid-19-vaccination-advice-from-the-jcvi-30-december-2020/joint-committee-on-vaccination-and-immunisation-advice-on-priority-groups-for-covid-19-vaccination-30-december-2020 Search in Google Scholar

Hassan-Smith Z, Hanif W, Khunti K. Who should be prioritised for COVID-19 vaccines? Lancet. 2020; 396(10264):1732–3. Hassan-SmithZ HanifW KhuntiK Who should be prioritised for COVID-19 vaccines? Lancet 2020 396 10264 1732 3 10.1016/S0140-6736(20)32224-8 Search in Google Scholar

Holman N, Knighton P, Kar P, O’Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020; 8:823–33. HolmanN KnightonP KarP O’KeefeJ CurleyM WeaverA Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study Lancet Diabetes Endocrinol 2020 8 823 33 10.1016/S2213-8587(20)30271-0 Search in Google Scholar

Khunti K, Routen A, Patel K, Ali SN, Gill P, Banerjee A, et al. COVID-19 in black, Asian and minority ethnic populations: an evidence review and recommendations from the South Asian Health Foundation [Internet]. Leicester: South Asian Health Foundation; 2020 [cited 2021 March 24]. Available from: https://static1.squarespace.com/static/5944e54ab3db2b94bb077ceb/t/5f059972f6680542c546897f/1594202487799/Covid19_SAHF_Final+for+Release.pdf KhuntiK RoutenA PatelK AliSN GillP BanerjeeA COVID-19 in black, Asian and minority ethnic populations: an evidence review and recommendations from the South Asian Health Foundation [Internet] Leicester South Asian Health Foundation 2020 [cited 2021 March 24]. Available from: https://static1.squarespace.com/static/5944e54ab3db2b94bb077ceb/t/5f059972f6680542c546897f/1594202487799/Covid19_SAHF_Final+for+Release.pdf Search in Google Scholar

Clift AK, Coupland CAC, Keogh R, Diaz-Ordaz K, Williamson E, Harrison E, et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ. 2020; 371:m3731. doi: 10.1136/bmj.m3731 CliftAK CouplandCAC KeoghR Diaz-OrdazK WilliamsonE HarrisonE Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study BMJ 2020 371 m3731 10.1136/bmj.m3731757453233082154 Open DOISearch in Google Scholar

World Health Organization Department of Communicable Disease Surveillance and Response. WHO guidelines on the use of vaccines and antivirals during influenza pandemics. [Internet] Geneva: WHO; 2004. [cited 2021 March 31]; Available from: https://www.who.int/influenza/resources/documents/WHO_CDS_CSR_RMD_2004_8/en/ World Health Organization Department of Communicable Disease Surveillance and Response WHO guidelines on the use of vaccines and antivirals during influenza pandemics. [Internet] Geneva WHO 2004 [cited 2021 March 31]; Available from: https://www.who.int/influenza/resources/documents/WHO_CDS_CSR_RMD_2004_8/en/ Search in Google Scholar

Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014; 14:559–67. LichtyBD BreitbachCJ StojdlDF BellJC Going viral with cancer immunotherapy Nat Rev Cancer 2014 14 559 67 10.1038/nrc377024990523 Search in Google Scholar

Bollyky TJ, Gostin LO, Hamburg MA. The equitable distribution of COVID-19 therapeutics and vaccines. JAMA. 2020; 323:2462–3. BollykyTJ GostinLO HamburgMA The equitable distribution of COVID-19 therapeutics and vaccines JAMA 2020 323 2462 3 10.1001/jama.2020.664132379268 Search in Google Scholar

eISSN:
1875-855X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine