Zacytuj

Introduction

The study of nonlinear differential equation (NLDE) solutions attracts the attention of scientists. NLDE is used in many areas such as physics and chemistry. We need to explore the solutions of NLDE that have an important place in applied mathematics. Some scientists have explored these solutions.

In recent years, several effective methods, including extended tanh method [1, 2], first integral method [3, 4], He’s semi-inverse method [5, 6], sine–cosine method [7, 8], dynamical system method [9], modified simple equation method [10, 11], Bell-polynomial method [12], simplified Hirota’s method [13], Cole–Hopf transformation method [14], sine–cosine method [15], tanh method [16], generalized tanh function method [17], improved F-expansion method with Riccati equation [18, 19], modified exp(–Ω (ξ))-expansion function method [20, 21], and improved Bernoulli subequation function method [22], have been successfully considered to find the exact solutions of a wide variety of NLDEs and many others [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88].

In this study, we obtain new complex hyperbolic function solutions to the nonlinear Ablowitz-Kaup–Newell–Segur wave equation (AKNSWE) with fourth order [23], which is defined as

4uxt+uxxxt+8uxuxy+4uxxuyγuxx=0, $$\begin{array}{} \displaystyle 4{u_{{\rm{xt}}}} + {u_{{\rm{xxxt}}}} + 8{u_x}{u_{{\rm{xy}}}} + 4{u_{{\rm{xx}}}}{u_y} - {\rm{\gamma }}{{\rm{u}}_{{\rm{xx}}}} = 0, \end{array}$$

where γ is a real constant with a non-zero value, by using the sine-Gordon expansion method (SGEM).

Fundamental Properties of the SGEM

Let us consider the following sine-Gordon equation [24, 25, 26]:

uxxutt=m2sinu, $$\begin{array}{} \displaystyle {u_{xx}} - {u_{tt}} = {m^2}\sin \left( u \right), \end{array}$$

where u = u(x, t) and m is a real constant. When we apply the wave transform ξ = μ (xct) to Eq. (2), we obtain the nonlinear ordinary differential equation (NODE) as follows:

U=m2μ21c2sinU, $$\begin{array}{} \displaystyle U'' = \frac{{{m^2}}}{{{\mu ^2}\left( {1 - {c^2}} \right)}}\sin \left( U \right), \end{array}$$

where U = U(ξ), ξ is the amplitude of the travelling wave, and c is the velocity of the travelling wave. If we reconsider Eq. (3), we can write it in the full simplified version as follows:

U22=m2μ21c2sin2U2+K, $$\begin{array}{} \displaystyle {\left[ {{{\left( {\frac{U}{2}} \right)}^\prime }} \right]^2} = \frac{{{m^2}}}{{{\mu ^2}\left( {1 - {c^2}} \right)}}{\sin ^2}\left( {\frac{U}{2}} \right) + K, \end{array}$$

where K is the integration constant. When we resubmit as K=0,wξ=U2,anda2=m2μ21c2 $\begin{array}{} \displaystyle K = 0,{\rm{ }}w\left( \xi \right) = \frac{U}{2}, ~\text{and}~ {a^2} = \frac{{{m^2}}}{{{\mu ^2}\left( {1 - {c^2}} \right)}} \end{array}$ in Eq. (4), we can obtain the following equation:

w=asinw. $$\begin{array}{} \displaystyle {w^\prime } = a\sin \left( w \right). \end{array}$$

If we put a = 1 in Eq. (5), we can obtain the following equation:

w=sinw. $$\begin{array}{} \displaystyle {w^\prime } = \sin \left( w \right). \end{array}$$

If we solve Eq. (6) by using separation of variables, we find the following two significant equations:

sinw=sinwξ=2peξp2e2ξ+1p=1=sechξ, $$\begin{array}{} \displaystyle \sin \left( w \right) = \sin \left( {w\left( \xi \right)} \right) = {\left. {\frac{{2p{e^\xi }}}{{{p^2}{e^{2\xi }} + 1}}} \right|_{p = 1}} = \sec h\left( \xi \right), \end{array}$$

cosw=coswξ=p2e2ξ1p2e2ξ+1p=1=tanhξ, $$\begin{array}{} \displaystyle \cos \left( w \right) = \cos \left( {w\left( \xi \right)} \right) = {\left. {\frac{{{p^2}{e^{2\xi }} - 1}}{{{p^2}{e^{2\xi }} + 1}}} \right|_{p = 1}} = \tanh \left( \xi \right), \end{array}$$

where p is the integral constant having a non-zero value. For the solution of following nonlinear partial differential equation

Pu,ux,ut,=0, $$\begin{array}{} \displaystyle P\left( {u,{u_x},{u_t}, \cdots } \right) = 0, \end{array}$$

let us consider

Uξ=i=1δtanhi1ξBisechξ+Aitanhξ+A0. $$\begin{array}{} \displaystyle U\left( \xi \right) = \sum\limits_{i = 1}^\delta {{{\tanh }^{i - 1}}} \left( \xi \right)\left[ {{B_i}\sec h\left( \xi \right) + {A_i}\tanh \left( \xi \right)} \right] + {A_0}. \end{array}$$

We can rewrite Eq. (10) according to Eqs. (7 and 8) as follows:

Uw=i=1δcosi1wBisinw+Aicosw+A0. $$\begin{array}{} \displaystyle U\left( w \right) = \sum\limits_{i = 1}^\delta {{{\cos }^{i - 1}}} \left( w \right)\left[ {{B_i}\sin \left( w \right) + {A_i}\cos \left( w \right)} \right] + {A_0}. \end{array}$$

Under the terms of homogenous balance technique, we can determine the values of n under the terms of NODE. Let the coefficients of sini(w) cosj(w) all be zero; it yields a system of equations. Solving this system by using Wolfram Mathematica 9 gives the values of .Ai, Bi, μ and c Finally, substituting the values of Ai, Bi, μ and c in Eq.(10), we can find new analytical solutions to Eq. (9).

Application of the SGEM

SGEM has been successfully used to obtain analytical solutions to the AKNSWE. Using u(x, y, t) = U(ξ), ξ = x + y + ωt in Eq. (1), we get

4ωγU+ωU+6U2=0. $$\begin{array}{} \displaystyle \left( {4\omega - \gamma } \right)U' + \omega U''' + 6{\left( {U'} \right)^2} = 0. \end{array}$$

If we consider V = U′, we can obtain the following nonlinear differential equation:

4ωγV+6V2+ωV=0. $$\begin{array}{} \displaystyle \left( {4\omega - \gamma } \right)V + 6{V^2} + \omega V'' = 0. \end{array}$$

After balancing, we find δ = 2. For this value, Eq. (11) can be written as

Vw=B1sinw+A1cosw+B2coswsinw+A2cos2w+A0. $$\begin{array}{} \displaystyle V\left( w \right) = {B_1}{\rm{sin}}\left( w \right) + {A_1}{\rm{cos}}\left( w \right) + {B_2}{\rm{cos}}\left( w \right){\rm{sin}}\left( w \right) + {A_2}{\rm{co}}{{\rm{s}}^2}\left( w \right) + {A_0}. \end{array}$$

If we put Eq. (13) with second derivation into Eq. (12), we can find a trigonometric equation. Solving this, we can choose the following coefficients:

A0=ω3;A1=0;A2=ω2;B1=0;B2=iω2;γ=3ω. $$\begin{array}{} \displaystyle {A_0} = \frac{\omega }{3};{A_1} = 0;{A_2} = - \frac{\omega }{2};{B_1} = 0;{B_2} = - \frac{{{\rm{i}}\omega }}{2};\gamma = 3\omega . \end{array}$$

Inserting these values into Eq. (10) with V = U′ yields

U1x,y,t=16ωx+y+tω3isechx+y+tω3tanhx+y+tω. $$\begin{array}{} \displaystyle {U_1}\left( {x,y,t} \right) = - \frac{1}{6}\omega \left( {x + y + t\omega - 3{\rm{i}}s{\rm{ech}}\left[ {x + y + t\omega } \right] - 3{\rm{tanh}}\left[ {x + y + t\omega } \right]} \right). \end{array}$$

Considering another coefficient as

A0=ω2;A1=0;A2=ω2;B1=0;B2=iω2;γ=5ω $$\begin{array}{} \displaystyle {A_0} = \frac{\omega }{2};{A_1} = 0;{A_2} = - \frac{\omega }{2};{B_1} = 0;{B_2} = - \frac{{{\rm{i}}\omega }}{2};\gamma = 5\omega \end{array}$$

into Eq. (10) with V = U′ produces following complex hyperbolic function solutions:

U2x,y,t=12ωisechωt+x+y+tanhωt+x+y $$\begin{array}{} \displaystyle {U_2}\left( {x,y,t} \right) = \frac{1}{2}\omega \left( {{\rm{isech}}\left[ {\omega t + x + y} \right] + {\rm{tanh}}\left[ {\omega t + x + y} \right]} \right) \end{array}$$

Taking another coefficient as follows

A0=γ9;A1=0;A2=γ6;B1=0;B2=iγ6;ω=γ3; $$\begin{array}{} \displaystyle {A_0} = \frac{\gamma }{9};{A_1} = 0;{A_2} = - \frac{\gamma }{6};{B_1} = 0;{B_2} = - \frac{{{\rm{i}}\gamma }}{6};\omega = \frac{\gamma }{3}; \end{array}$$

into Eq. (10) with V = U′, we find the following result:

U3x,y,t=118γγt3+x+y3isechγt3+x+y3tanhγt3+x+y. $$\begin{array}{} \displaystyle {{\rm{U}}_3}\left( {{\rm{x}},{\rm{y}},{\rm{t}}} \right) = - \frac{1}{{18}}{\rm{\gamma }}\left( {\frac{{{\rm{\gamma t}}}}{3} + {\rm{x}} + {\rm{y}} - 3{\rm{isech}}\left[ {\frac{{{\rm{\gamma t}}}}{3} + {\rm{x}} + {\rm{y}}} \right] - 3{\rm{tanh}}\left[ {\frac{{{\rm{\gamma t}}}}{3} + {\rm{x}} + {\rm{y}}} \right]} \right).{\rm{\;}} \end{array}$$

Getting the following items into Eq. (10) with V = U′;

A0=γ8;A1=0;A2=γ8;B1=0;B2=0;ω=γ8; $$\begin{array}{} \displaystyle {A_0} = \frac{\gamma }{8};{A_1} = 0;{A_2} = - \frac{\gamma }{8};{B_1} = 0;{B_2} = 0;\omega = \frac{\gamma }{8}; \end{array}$$

we can find

U4x,y,t=18γtanhγt8+x+y $$\begin{array}{} \displaystyle {U_4}\left( {x,y,t} \right) = \frac{1}{8}\gamma {\rm{tanh}}\left[ {\frac{{\gamma t}}{8} + x + y} \right] \end{array}$$

Inserting

A0=γ10;A1=0;A2=γ10;B1=0;B2=iγ10;ω=γ5 $$\begin{array}{} \displaystyle {A_0} = \frac{\gamma }{{10}};{A_1} = 0;{A_2} = - \frac{\gamma }{{10}};{B_1} = 0;{B_2} = - \frac{{{\rm{i}}\gamma }}{{10}};\omega = \frac{\gamma }{5} \end{array}$$

into Eq. (10) with V = U′ gives rise to

U5x,y,t=γ5i+5coth12γt5+x+y. $$\begin{array}{} \displaystyle {U_5}\left( {x,y,t} \right) = \frac{\gamma }{{5{\rm{i}} + 5{\rm{coth}}\left[ {\frac{1}{2}\left( {\frac{{\gamma t}}{5} + x + y} \right)} \right]}}. \end{array}$$

When we take one another coefficient as follows into Eq. (10) with V = U

A0=γ9;A1=0;A2=γ6;B1=0;B2=iγ6;ω=γ3, $$\begin{array}{} \displaystyle {A_0} = \frac{\gamma }{9};{A_1} = 0;{A_2} = - \frac{\gamma }{6};{B_1} = 0;{B_2} = \frac{{{\rm{i}}\gamma }}{6};\omega = \frac{\gamma }{3}, \end{array}$$

we get the following solution:

U6x,y,t=118γγt3+x+y+3isechγt3+x+y3tanhγt3+x+y. $$\begin{array}{} \displaystyle {U_6}\left( {x,y,t} \right) = - \frac{1}{{18}}\gamma \left( {\frac{{\gamma t}}{3} + x + y + 3{\rm{isech}}\left[ {\frac{{\gamma t}}{3} + x + y} \right] - 3{\rm{tanh}}\left[ {\frac{{\gamma t}}{3} + x + y} \right]} \right). \end{array}$$

Finally, if we take into account the following coefficient into Eq. (10) with V = U′,

A0=γ10;A1=0;A2=γ10;B1=0;B2=iγ10;ω=γ5, $$\begin{array}{} \displaystyle {A_0} = \frac{\gamma }{{10}};{A_1} = 0;{A_2} = - \frac{\gamma }{{10}};{B_1} = 0;{B_2} = \frac{{{\rm{i}}\gamma }}{{10}};\omega = \frac{\gamma }{5}, \end{array}$$

we obtain another complex hyperbolic function solutions as follows:

U7x,y,t=γ5i+5coth12γt5+x+y. $$\begin{array}{} \displaystyle {U_7}\left( {x,y,t} \right) = \frac{\gamma }{{ - 5i + 5{\rm{coth}}\left( {\frac{1}{2}\left( {\frac{{\gamma t}}{5} + x + y} \right)} \right)}}. \end{array}$$

U7x,y,t=γ5i+5coth12γt5+x+y. $$\begin{array}{} \displaystyle {U_7}\left( {x,y,t} \right) = \frac{\gamma }{{ - 5{\rm{i}} + 5{\rm{coth}}\left[ {\frac{1}{2}\left( {\frac{{\gamma t}}{5} + x + y} \right)} \right]}}. \end{array}$$

Fig. 7

The 2D 3D and contur graphs of the imaginary part of Eq. (17)

Fig. 8

The 2D 3D and contur graphs of the imaginary part of Eq. (18)

Fig. 9

The 2D 3D and contur graphs of the real part of Eq. (18)

Conclusions

In summary, we have successfully applied the SGEM to Eq. (1) to find new complex hyperbolic function solutions. We have plotted 2D and 3D surfaces of the solutions along with contour surfaces under the suitable values of parameters by using computational program along with contour surfaces of them. It has been observed that the travelling wave solutions obtained in this paper are entirely new complex hyperbolic function solutions compared with [23]. To the best of our knowledge, the application of SGEM to the nonlinear Ablowitz–Kaup–Newell–Segur wave equation with fourth order has not been submitted to literature before.

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics