Otwarty dostęp

Health risks of leafy vegetable Alternanthera philoxeroides (Alligator weed) rich in phytochemicals and minerals


Zacytuj

1. Banerjee A, Matai S. Composition of Indian aquatic plants in relation to utilization as animal forage. J. Aquat. Plant Manage. 1990; 28: 29-73.Search in Google Scholar

2. Bhatta R, Das TK. Chemical and amino acid composition of alligator weed (Alternnathera philoxeroides). Indian Vet. J., 1996; pp. 799-800.Search in Google Scholar

3. Dutta P. Pharmacognostical evaluation and preliminary phytochemical analysis of Alternanthera philoxeroides. Int. J. MediPharm Res 2015; 1(1): 7-13.Search in Google Scholar

4. Tukun AB, Shaheen N, Banu CP, Mohiduzzaman Md, Islam S, Begum M. Antioxidant capacity and total phenolic contents in hydrophilic extracts of selected Bangladeshi medicinal plants. Asian Pacific J Trop Med 2014; 7(1): S568-S573.10.1016/S1995-7645(14)60291-1Search in Google Scholar

5. Prasad MNV, Freitas HM. Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electronic J Biotech 2003; 6(3): 285-321.Search in Google Scholar

6. Maheshwari JK. Alligator weed in Indian lakes. Nature 1965; 206: 1270. (doi:10.1038/ 2061270a0; accessed on May 4, 2015).Search in Google Scholar

7. Reddy CS, Raju VS. Invasion of Alligator weed (Alternanthera philoxeroides) in Andaman Islands. J Bombay Nat Hist Soc 2005; 102(1): 133.Search in Google Scholar

8. Sushilkumar, Sondhia S, Vishwakarma K. Occurrence of alien alligator weed in India with special reference to its infestation in some districts of Madhya Pradesh. Indian J Weed Sci 2009; 41(3&4): 185-187.Search in Google Scholar

9. Subbaiah B, Asija GL. A rapid procedure for estimation of available nitrogen in soils. Curr Sci 1956; 25(8): 259-260.Search in Google Scholar

10. Olsen SR, Cole CV, Watanable FS, Dean LA. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept Agri Circ 939, 1954.Search in Google Scholar

11. Shai G, Cai Q. Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 2009; 27(5): 555-561.10.1016/j.biotechadv.2009.04.00619393309Open DOISearch in Google Scholar

12. Pandey VC, Singh N. Impact of fly ash incorporation in soil systems. Agric. Ecosyst Environ 2010; 136: 16-27.Search in Google Scholar

13. Hadad HR, Maine MA. Phosphorous amount in floating and rooted macrophytes growing in wetlands from the Middle Parana River floodplain (Argentina). Ecol Eng 2007; 31: 251-258.10.1016/j.ecoleng.2007.08.001Open DOISearch in Google Scholar

14. U S Environmental Protection Agency (USEPA). Publication 9345.0-12FSIEPA 540/F-95/038 PB95-963324, Intermittent Bull 1997; 3(2).Search in Google Scholar

15. Gurzau ES, Neagu C, Gurzau AC. Essential metals-case study on Iron Ecotoxic Environ Safety 2003; 58(1): 190-200.Search in Google Scholar

16. Pal S, Kundu R. Accumulation of two transition metals and its influence on lipid peroxidation and photosynthetic pigments in an aquatic macrophyte [Alternanthera philoxeroides (Mart.) Griseb. J Botanic Soc Bengal 2011; 65(1): 23-29.Search in Google Scholar

17. Meitei MD, Prasad MNV. Adsorption of Cu (II), Mn (II) and Zn (II) by Spirodela polyrrhiza (L.) Schleiden: equilibrium, kinetic and thermodynamic studies. Ecol Eng 2014; 71: 308-317.10.1016/j.ecoleng.2014.07.036Search in Google Scholar

18. Wolverton, BC, McDonald RC. Water hyacinths and alligator weeds for removal of Lead and Mercury from polluted waters. NASA National Space Technology Laboratories, Bay St. Louis, Mississippi, 1975; pp. 14.Search in Google Scholar

19. Prasad MNV. Bioremediation potential of Amaranthaceae. In: Leeson A, Foote EA, Banks MK, Magar VS (eds.), Phytoremediation, Wetlands and Sediments. 6(5): 165-172. Proc. Int. In site and On site Bioremediation Symposium, Battelle Press, Columbus, OH.Search in Google Scholar

20. Prasad MNV. Exploitation of weeds and ornamentals for bioremediation of metalliferous substrates in the era of climate change. In: Ahmad P, Prasad MNV (eds.), Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. pp. 487-508. Springer New York Dordrecht Heidelberg London.10.1007/978-1-4614-0815-4_23Search in Google Scholar

21. Wang B, Du Y. Cadmium and its neurotoxic effects. Oxidat. Med Cell Long 2013; pp. 12, Ekong EB, Jaar BG, Weaver VM. Lead related nephrotoxicity: a review of the epidemiologic evidence. Kidney Int 2006; 70(12): 2074-2084.10.1038/sj.ki.500180917063179Search in Google Scholar

22. Bassett I, Beggs J, Paynter Q. Decomposition dynamics of invasive alligator weed compared with native sledges in a Northland lake. New Zealand J Ecol 2010; 34: 324-331.Search in Google Scholar

23. Quimby PC Jr, Kay SH. Alligator weed and water quality in two oxbow lakes of the Yazoo River basin. J Mississippi Acad Sci 1976; 21(Suppl.): 13.Search in Google Scholar

24. Commonwealth of Australia. Weeds of National Significance Alligator Weed (Alternanthera philoxeroides) strategic plan. National Weeds Strategy Executive Committe, Launceston (AU), 2012. (accessed on March 25, 2016).Search in Google Scholar

25. Shen J, Shen M, Wang X, Lu Y. Effect of environmental factors on shoot emergence and vegetative growth of alligator weed (Alternanthera philoxeroides). Weed Sci 2005; 53: 471-478.10.1614/WS-04-198RSearch in Google Scholar

26. Global Invasive Species Database. Alternanthera philoxeroides. 2016. http://www.iucngisd.org/gisd/speciesname/Alternanthera+philoxeroides (accessed on 16-06-2016).Search in Google Scholar

27. EPPO. Alternanthera philoxeroides (Amaranthaceae). 2012. https://www.eppo.int/INVASIVE_PLANTS/iap_list/alternanthera_philoxeroides.htm. (accessed on March 26, 2016).Search in Google Scholar

eISSN:
2564-615X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other