Otwarty dostęp

Ecological Material Solutions with Use of Composites


Zacytuj

Adamczyk, Z., Grzesik, B. & Harat, A. (2017). Środowiskowe skutki stosowania żużla hutniczego jako składnika kruszyw. Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo, 23, 9–15. https://doi.org/10.17512/znb.2017.1.0110.17512/znb.2017.1.01 Search in Google Scholar

Aly, M. (2012). Development of an Eco-friendly Composite Material for Engineering Applications (PhD thesis). Dublin City University, Dublin. http://doras.dcu.ie/16857/1/Marwa_Aly__Final_thesis_for_printing.pdf Search in Google Scholar

Badache, A., Benosman, A. S., Senhadji, Y. & Mouli, M. (2018). Thermo-physical and mechanical characteristics of sand-based lightweight composite mortars with recycled high-density polyethylene (HDPE). Construction and Building Materials, 163, 40–52. https://doi.org/10.1016/j.conbuildmat.2017.12.06910.1016/j.conbuildmat.2017.12.069 Search in Google Scholar

Bobko, T. & Całusiński, P. (2012). Modelowanie racjonalnych powiazań pomiędzy parametrami inżynierii procesowej w produkcji energooszczędnych elementów budowlanych. Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo, 18, 13–27. Search in Google Scholar

Brózda, K. (2015). Ekologiczne materiały kompozytowe w budownictwie. In M. Ulewicz, J. Selejdak (Eds.), Ekoinnowacje w materiałach i technologiach budowlanych (pp. 60–69). Częstochowa: Wydawnictwo Wydzia-łu Zarządzania Politechniki Częstochowskiej. Search in Google Scholar

Fraj, A. B. & Idir, R. (2017). Concrete based on recycled aggregates – Recycling and environmental analysis: A case study of Paris’ region. Construction and Building Materials, 157, 952–964. https://doi.org/10.1016/j.conbuildmat.2017.09.05910.1016/j.conbuildmat.2017.09.059 Search in Google Scholar

Góra, J. (2014). Możliwości zastosowania polskich kruszyw węglanowych do betonów wysokowartościowych. In S. Fic (Ed.), Materiały kompozytowe i moż-liwości ich zastosowania w budownictwie tradycyjnym i energooszczędnym (pp. 21–30). Lublin: Politechnika Lubelska. Search in Google Scholar

Han, J. & Thakur, J. K. (2014). Sustainable roadway construction using recycled aggregates with geosynthetics. Sustainable Cities and Society, 14, 342–350. https://doi.org/10.1016/j.scs.2013.11.01110.1016/j.scs.2013.11.011 Search in Google Scholar

Hegde, A. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects : A state-of-the-art review. Construction and Building Materials, 154, 658–674. https://doi.org/10.1016/j.conbuildmat.2017.07.23010.1016/j.conbuildmat.2017.07.230 Search in Google Scholar

Herrera, J. P., Bedoya-Ruiz, D. & Hurtado, J. E. (2018). Seismic behavior of recycled plastic lumber walls: An experimental and analytical research. Engineering Structures, 177, 566–578. https://doi.org/10.1016/j.engstruct.2018.10.00610.1016/j.engstruct.2018.10.006 Search in Google Scholar

Hollaway, L. C. (2003). The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Construction and Building Materials, 17, 365–378. https://doi.org/10.1016/S0950-0618(03)00038-210.1016/S0950-0618(03)00038-2 Search in Google Scholar

Hung, K. C., Wu, T. L., Chen, Y. L., Wu, J. H. (2016). Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Construction and Building Materials, 108, 139–145. https://doi.org/10.1016/j.conbuildmat.2016.01.03910.1016/j.conbuildmat.2016.01.039 Search in Google Scholar

Jacob-Vaillancourt, C. & Sorelli, L. (2018). Characterization of concrete composites with recycled plastic aggregates from postconsumer material streams. Construction and Building Materials, 182, 561–572. https://doi.org/10.1016/j.conbuildmat.2018.06.08310.1016/j.conbuildmat.2018.06.083 Search in Google Scholar

Kendall, K. (2007). Building the future with FRP composites. Reinforced Plastics, 5, 26–33.10.1016/S0034-3617(08)70131-0 Search in Google Scholar

Lila, M. K., Kumar, F., Sharma, S. (2013). Composites from waste for civil engineering applications. i-manager’s Journal on Material Science, 1 (3), 1–10.10.26634/jms.1.3.2558 Search in Google Scholar

Marthong, C., Sangma, A. S., Choudhury, S. A., Pyrbot, R. N., Tron, S. L., Mawroh, L. & Bharti, G. S (2017). Structural Behavior of Recycled Aggregate Concrete Beam-Column Connection in Presence of Micro Concrete at Joint Region. Structures, 11, 243–251. https://doi.org/10.1016/j.istruc.2017.07.00110.1016/j.istruc.2017.07.001 Search in Google Scholar

Moallemi Pour, S. & Alam, M. S. (2016). Investigation of Compressive Bond Behavior of Steel Rebar Embedded in Concrete With Partial Recycled Aggregate Replacement. Structures, 7, 153–164. https://doi.org/10.1016/j.istruc.2016.06.01010.1016/j.istruc.2016.06.010 Search in Google Scholar

Niemiro, J. (2016). Analiza i wykorzystanie dźwiękochłonnych właściwości granulatu gumowego pozyskanego z recyklingu. Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo, 22, 257–264. https://doi.org/10.17512/znb.2016.1.2510.17512/znb.2016.1.25 Search in Google Scholar

Srivabut, C., Ratanawilai, T. & Hiziroglu, S. (2018). Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber. Construction and Building Materials, 162, 450–458. https://doi.org/10.1016/j.conbuildmat.2017.12.04810.1016/j.conbuildmat.2017.12.048 Search in Google Scholar

Thakur, J. K., Han, J., Pokharel, S. K. & Parsons, R. L. (2012). Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading. Geotextiles and Geomembranes, 35, 14–24. https://doi.org/10.1016/j.geotexmem.2012.06.00410.1016/j.geotexmem.2012.06.004 Search in Google Scholar

Väntsi, O. & Kärki, T. (2014). Utilization of recycled mineral wool as filler in wood-polypropylene composites. Construction and Building Materials, 55, 220–226. https://doi.org/10.1016/j.conbuildmat.2014.01.05010.1016/j.conbuildmat.2014.01.050 Search in Google Scholar

Vieira, C. S. & Pereira, P. M. (2015). Transportation Geotechnics Damage induced by recycled Construction and Demolition Wastes on the short-term tensile behaviour of two geosynthetics. Transportation Geotechnics, 4, 64–75. https://doi.org/10.1016/j.trgeo.2015.07.00210.1016/j.trgeo.2015.07.002 Search in Google Scholar

Wang, Y., Chen, J. & Geng, Y. (2015). Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns. Engineering Structures, 86, 192–212. https://doi.org/10.1016/j.engstruct.2015.01.00710.1016/j.engstruct.2015.01.007 Search in Google Scholar

Xu, J. J., Chen, Z. P., Xiao, Y., Demartino, C. & Wang, J. H. (2017). Recycled Aggregate Concrete in FRP-confined columns: A review of experimental results. Composite Structures, 174, 277–291. https://doi.org/10.1016/j.compstruct.2017.04.03410.1016/j.compstruct.2017.04.034 Search in Google Scholar

Younis, A., Ebead, U. & Judd, S. (2018). Life cycle cost analysis of structural concrete using seawater, recycled concrete aggregate, and GFRP reinforcement. Construction and Building Materials, 175, 152–160. https://doi.org/10.1016/j.conbuildmat.2018.04.18310.1016/j.conbuildmat.2018.04.183 Search in Google Scholar

eISSN:
2544-1760
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Architecture and Design, Architecture, Architects, Buildings, Cities, Regions, Landscape Architecture, Construction, Materials