Otwarty dostęp

Bioactive Compounds of Pseudoalteromonas sp. IBRL PD4.8 Inhibit Growth of Fouling Bacteria and Attenuate Biofilms of Vibrio alginolyticus FB3


Zacytuj

Abu Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact. 2011;10(1):74. doi:10.1186/1475-2859-10-74 MedlineAbu SayemSMManzoECiavattaLTramiceACordoneAZanfardinoADe FeliceMVarcamontiM.Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformisMicrob Cell Fact.201110(1):74. doi:10.1186/1475-2859-10-74Medline319691121951859Open DOISearch in Google Scholar

Acevedo MS, Puentes C, Carreño K, León JG, Stupak M, García M, Pérez M, Blustein G. Antifouling paints based on marine natural products from Colombian Caribbean. Int Biodeterior Biodegradation. 2013;83:97–104. doi:10.1016/j.ibiod.2013.05.002AcevedoMSPuentesCCarreñoKLeónJGStupakMGarcíaMPérezMBlusteinG.Antifouling paints based on marine natural products from Colombian CaribbeanInt Biodeterior Biodegradation.20138397104. doi:10.1016/j.ibiod.2013.05.002Open DOISearch in Google Scholar

Bavya M, Mohanapriya P, Pazhanimurugan R, Balagurunathan R. Potential bioactive compound from marine actinomycetes against biofouling bacteria. Indian J Geomarine Sci. 2011;40(4):578–582.BavyaMMohanapriyaPPazhanimuruganRBalagurunathanR.Potential bioactive compound from marine actinomycetes against biofouling bacteriaIndian J Geomarine Sci.201140(4):578582Search in Google Scholar

Ben Abdallah F, Lagha R, Said K, Kallel H, Gharbi J. Detection of cell surface hydrophobicity, biofilm and fimbirae genes in Salmonella isolated from Tunisian clinical and poultry meat. Iran J Public Health. 2014;43(4):423–431. MedlineBen AbdallahFLaghaRSaidKKallelHGharbiJ.Detection of cell surface hydrophobicity, biofilm and fimbirae genes in Salmonella isolated from Tunisian clinical and poultry meatIran J Public Health.201443(4):423431MedlineSearch in Google Scholar

Bernbom N, Ng YY, Kjelleberg S, Harder T, Gram L. Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl Environ Microbiol. 2011;77(24):8557–8567. doi:10.1128/AEM.06038-11 MedlineBernbomNNgYYKjellebergSHarderTGramL.Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activityAppl Environ Microbiol.201177(24):85578567. doi:10.1128/AEM.06038-11Medline323310222003011Open DOISearch in Google Scholar

Braddy RF Jr. No more tin, what now for fouling control. J Protective Coating and Linings. 2000;5(6):42–46.BraddyRFJr.No more tin, what now for fouling controlJ Protective Coating and Linings.20005(6):4246Search in Google Scholar

Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo Å, Adams DR. The development of a marine natural product-based antifouling paint. Biofouling. 2003;19(sup1) Suppl:197–205. doi:10.1080/0892701031000061778 MedlineBurgessJGBoydKGArmstrongEJiangZYanLBerggrenMMayUPisacaneTGranmoÅAdamsDR.The development of a marine natural product-based antifouling paintBiofouling.200319(sup1) Suppl:197205. doi:10.1080/0892701031000061778Medline14618721Open DOISearch in Google Scholar

Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergis tic interactions in multispecies biofilms. Appl Environ Micro biol. 2006;72(6):3916–3923. doi:10.1128/AEM.03022-05 MedlineBurmølleMWebbJSRaoDHansenLHSørensenSJKjellebergS.Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergis tic interactions in multispecies biofilmsAppl Environ Micro biol.200672(6):39163923. doi:10.1128/AEM.03022-05Medline148963016751497Open DOISearch in Google Scholar

Busetti A, Shaw G, Megaw J, Gorman S, Maggs C, Gilmore B. Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against Pseudomonas aeruginosa. Mar Drugs. 2015;13(1):1–28. doi:10.3390/md13010001 MedlineBusettiAShawGMegawJGormanSMaggsCGilmoreB.Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against Pseudomonas aeruginosaMar Drugs.201513(1):128. doi:10.3390/md13010001Medline430692225546516Open DOISearch in Google Scholar

Cai W, De La Fuente L, Arias CR. Biofilm formation by the fish pathogen Flavobacterium columnare: development and parame ters affecting surface attachment. Appl Environ Microbiol. 2013;79(18):5633–5642. doi:10.1128/AEM.01192-13 MedlineCaiWDe La FuenteLAriasCR.Biofilm formation by the fish pathogen Flavobacterium columnare: development and parame ters affecting surface attachmentAppl Environ Microbiol.201379(18):56335642. doi:10.1128/AEM.01192-13Medline375416023851087Open DOISearch in Google Scholar

Cartron ML, England SR, Chiriac AI, Josten M, Turner R, Rauter Y, Hurd A, Sahl HG, Jones S, Foster SJ. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(7):3599–3609. doi:10.1128/AAC.01043-13 MedlineCartronMLEnglandSRChiriacAIJostenMTurnerRRauterYHurdASahlHGJonesSFosterSJ.Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureusAntimicrob Agents Chemother.201458(7):35993609. doi:10.1128/AAC.01043-13Medline406851724709265Open DOISearch in Google Scholar

Cheng HR, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett. 2006;28(1):55–59. doi:10.1007/s10529-005-4688-z MedlineChengHRJiangN.Extremely rapid extraction of DNA from bacteria and yeastsBiotechnol Lett.200628(1):5559. doi:10.1007/s10529-005-4688-zMedline16369876Open DOISearch in Google Scholar

Davey ME, O’toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64(4):847–867. doi:10.1128/MMBR.64.4.847-867.2000 MedlineDaveyMEO’tooleGA.Microbial biofilms: from ecology to molecular geneticsMicrobiol Mol Biol Rev.200064(4):847867. doi:10.1128/MMBR.64.4.847-867.2000Medline9901611104821Open DOISearch in Google Scholar

Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–1642. doi:10.1007/s00253-009-2355-3 MedlineDesboisAPSmithVJ.Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potentialAppl Microbiol Biotechnol.201085(6):16291642. doi:10.1007/s00253-009-2355-3Medline19956944Open DOISearch in Google Scholar

Desbois AP. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov. 2012;7(2):111–122. doi:10.2174/157489112801619728 MedlineDesboisAP.Potential applications of antimicrobial fatty acids in medicine, agriculture and other industriesRecent Pat Antiinfect Drug Discov.20127(2):111122. doi:10.2174/157489112801619728Medline22630821Open DOISearch in Google Scholar

Fitridge I, Dempster T, Guenther J, de Nys R. The impact and control of biofouling in marine aquaculture: a review. Biofouling. 2012;28(7):649–669. doi:10.1080/08927014.2012.700478 MedlineFitridgeIDempsterTGuentherJde NysR.The impact and control of biofouling in marine aquaculture: a reviewBiofouling.201228(7):649669. doi:10.1080/08927014.2012.700478Medline22775076Open DOISearch in Google Scholar

Floerl O, Sunde LM, Bloecher N. Potential environmental risks associated with biofouling management in salmon aquaculture. Aquacult Environ Interact. 2016;8:407–417. doi:10.3354/aei00187FloerlOSundeLMBloecherN.Potential environmental risks associated with biofouling management in salmon aquacultureAquacult Environ Interact.20168407417. doi:10.3354/aei00187Open DOISearch in Google Scholar

Franks A, Egan S, Holmström C, James S, Lappin-Scott H, Kjelleberg S. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl Environ Microbiol. 2006;72(9):6079–6087. doi:10.1128/AEM.00559-06 MedlineFranksAEganSHolmströmCJamesSLappin-ScottHKjellebergS.Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonizationAppl Environ Microbiol.200672(9):60796087. doi:10.1128/AEM.00559-06Medline156361016957232Open DOISearch in Google Scholar

Galbraith H, Miller TB. Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol. 1973;36(4):659–675. doi:10.1111/j.1365-2672.1973.tb04151.x MedlineGalbraithHMillerTB.Effect of long chain fatty acids on bacterial respiration and amino acid uptakeJ Appl Bacteriol.197336(4):659675. doi:10.1111/j.1365-2672.1973.tb04151.xMedline4787613Open DOISearch in Google Scholar

Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, Hoebe K, Du X, Rutschmann S, Jiang Z, et al. A tolllike receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect Immun. 2005;73(8):4512–4521. doi:10.1128/IAI.73.8.4512-4521.2005 MedlineGeorgelPCrozatKLauthXMakrantonakiESeltmannHSovathSHoebeKDuXRutschmannSJiangZA tolllike receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteriaInfect Immun.200573(8):45124521. doi:10.1128/IAI.73.8.4512-4521.2005Medline120119816040962Open DOISearch in Google Scholar

Guardiola FA, Cuesta A, Meseguer J, Esteban MA. Risks of using antifouling biocides in aquaculture. Int J Mol Sci. 2012;13(2):541–1560. doi:10.3390/ijms13021541 MedlineGuardiolaFACuestaAMeseguerJEstebanMA.Risks of using antifouling biocides in aquacultureInt J Mol Sci.201213(2):5411560. doi:10.3390/ijms13021541Medline329197622408407Open DOISearch in Google Scholar

Haslbeck EG, Bohlander G. Microbial biofilm effects on drag-lab and field. In: Proceedings of the 1992 Ship Production Symposium, 2–4 September 1992. New Orleans Hyatt Regency, New Orleans, Louisiana.HaslbeckEGBohlanderG.Microbial biofilm effects on drag-lab and field. In: Proceedings of the 1992 Ship Production Symposium2–4 September 1992New Orleans Hyatt Regency, New Orleans, LouisianaSearch in Google Scholar

Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y. Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J Appl Microbiol. 2008;105(5):1672–1677. doi:10.1111/j.1365-2672.2008.03878.x MedlineHayashida-SoizaGUchidaAMoriNKuwaharaYIshidaY.Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strainJ Appl Microbiol.2008105(5):16721677. doi:10.1111/j.1365-2672.2008.03878.xMedline18828792Open DOISearch in Google Scholar

Iqbal F, Usup G, Ahmad A. Anti-biofilm activity of Pseudoalteromonas flavipulchra SktPp1 against Serratia marcescens SMJ-11. In: Conference Proceedings of the 2015 UKM FST Postgraduate Colloquium, 15–16 April 2015. Universiti Kebangsaan Malaysia, Malaysia.IqbalFUsupGAhmadA.Anti-biofilm activity of Pseudoalteromonas flavipulchra SktPp1 against Serratia marcescens SMJ-11. In: Conference Proceedings of the 2015 UKM FST Postgraduate Colloquium15–16 April 2015Universiti Kebangsaan Malaysia, Malaysia10.1063/1.4931228Search in Google Scholar

Isnansetyo A, Kamei Y. MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Anti microb Agents Chemother. 2003;47(2):480–488. doi:10.1128/AAC.47.2.480-488.2003 MedlineIsnansetyoAKameiY.MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureusAnti microb Agents Chemother.200347(2):480488. doi:10.1128/AAC.47.2.480-488.2003MedlineOpen DOISearch in Google Scholar

Iwata H, Tanabe S, Mizuno T, Tatsukawa R. High accumulation of toxic butyltins in marine mammals from Japanese coastal waters. Environ Sci Technol. 1995;29(12):2959–2962. doi:10.1021/es00012a011 MedlineIwataHTanabeSMizunoTTatsukawaR.High accumulation of toxic butyltins in marine mammals from Japanese coastal watersEnviron Sci Technol.199529(12):29592962. doi:10.1021/es00012a011MedlineOpen DOISearch in Google Scholar

Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One. 2011;6(4):e18514. doi:10.1371/journal.pone.0018514 MedlineJiangPLiJHanFDuanGLuXGuYYuW.Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101PLoS One.20116(4):e18514. doi:10.1371/journal.pone.0018514MedlineOpen DOISearch in Google Scholar

Jung JE, Pandit S, Jeon JG. Identification of linoleic acid, a main component of the n-hexane fraction from Dryopteris crassirhizoma, as an anti-Streptococcus mutans biofilm agent. Biofouling. 2014; 30(7):789–798. doi:10.1080/08927014.2014.930446 MedlineJungJEPanditSJeonJG.Identification of linoleic acid, a main component of the n-hexane fraction from Dryopteris crassirhizoma, as an anti-Streptococcus mutans biofilm agentBiofouling.201430(7):789798. doi:10.1080/08927014.2014.930446MedlineOpen DOISearch in Google Scholar

Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs. 2011;34(9):737–751. doi:10.5301/ijao.5000027 MedlineKaplanJB.Antibiotic-induced biofilm formationInt J Artif Organs.201134(9):737751. doi:10.5301/ijao.5000027MedlineOpen DOISearch in Google Scholar

Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004; 230(1):13–18. doi:10.1016/S0378-1097(03)00856-5 MedlineKerenIKaldaluNSpoeringAWangYLewisK.Persister cells and tolerance to antimicrobialsFEMS Microbiol Lett.2004230(1):1318. doi:10.1016/S0378-1097(03)00856-5MedlineOpen DOISearch in Google Scholar

Kim W, Kim Y, Kim J, Nam BH, Kim DG, An C, Lee J, Kim P, Lee H, Oh JS, et al. Liquid chromatography-mass spectrometery-based rapid secondary-metabolite profiling of marine Pseudo altero monas sp. M2. Mar Drugs. 2016;14(1):24. doi:10.3390/md14010024 MedlineKimWKimYKimJNamBHKimDGAnCLeeJKimPLeeHOhJSLiquid chromatography-mass spectrometery-based rapid secondary-metabolite profiling of marine Pseudo altero monas sp. M2Mar Drugs.201614(1):24. doi:10.3390/md14010024Medline472852026805856Open DOISearch in Google Scholar

Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M. The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology. 2005;151(11):3589–3602. doi:10.1099/mic.0.27954-0 MedlineKochBLiljeforsTPerssonTNielsenJKjellebergSGivskovM.The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitorsMicrobiology.2005151(11):35893602. doi:10.1099/mic.0.27954-0Medline16272381Open DOISearch in Google Scholar

Kwon KK, Lee HS, Jung S-Y, Yim J-H, Lee J-H, Lee HK. Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho, Korea. J Microbiol. 2002;40(4):260–266.KwonKKLeeHSJungS-YYimJ-HLeeJ-HLeeHK.Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho, KoreaJ Microbiol.200240(4):260266Search in Google Scholar

Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci. 2014;10(5):550–565. doi:10.7150/ijbs.9028 MedlineLadeHPaulDKweonJH.Quorum quenching mediated approaches for control of membrane biofoulingInt J Biol Sci.201410(5):550565. doi:10.7150/ijbs.9028Medline404688224910534Open DOISearch in Google Scholar

Lewandowski Z, Beyenal H. Fundamentals of biofilm research. 2014. Boca Raton (Florida): CRC Press. p. 1–61.LewandowskiZBeyenalH.Fundamentals of biofilm research2014Boca Raton (Florida)CRC Press. p. 16110.1201/b16291Search in Google Scholar

Lewis K. Persister Cells. Annu Rev Microbiol. 2010;64(1):357–372. doi:10.1146/annurev.micro.112408.134306 MedlineLewisK.Persister CellsAnnu Rev Microbiol.201064(1):357372. doi:10.1146/annurev.micro.112408.134306Medline20528688Open DOISearch in Google Scholar

Limna Mol VP, Raveendran TV, Parameswaran PS. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int Biodeterior Biodegradation. 2009;63(1):67–72. doi:10.1016/j.ibiod.2008.07.001Limna MolVPRaveendranTVParameswaranPS.Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick)Int Biodeterior Biodegradation.200963(1):6772. doi:10.1016/j.ibiod.2008.07.001Open DOISearch in Google Scholar

Liu Y, Zhao H. Predicting synergistic effects between compounds through their structural similarity and effects on transcriptomes. Bioinformatics. 2016;32(24):3782–3789. doi:10.1093/bioinformatics/btw509 MedlineLiuYZhaoH.Predicting synergistic effects between compounds through their structural similarity and effects on transcriptomesBioinformatics.201632(24):37823789. doi:10.1093/bioinformatics/btw509Medline607817027540269Open DOISearch in Google Scholar

Martínez-Luis S, Ballesteros J, Gutiérrez M. Antibacterial constituents from the octoral associated bacterium Pseudoaltero monas sp. Rev Latinoam Quím. 2011;39(1-2):75–83.Martínez-LuisSBallesterosJGutiérrezM.Antibacterial constituents from the octoral associated bacterium Pseudoaltero monas spRev Latinoam Quím.201139(1-2):7583Search in Google Scholar

Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–199. doi:10.1146/annurev.micro.55.1.165 MedlineMillerMBBasslerBL.Quorum sensing in bacteriaAnnu Rev Microbiol.200155(1):165199. doi:10.1146/annurev.micro.55.1.165Medline11544353Open DOISearch in Google Scholar

Mitova M, Tutino ML, Infusini G, Marino G, De Rosa S. Exocellular peptides from Antarctic psychrophile Pseudoalteromonas haloplanktis. Mar Biotechnol (NY). 2005;7(5):523–531. doi:10.1007/s10126-004-5098-2 MedlineMitovaMTutinoMLInfusiniGMarinoGDe RosaS.Exocellular peptides from Antarctic psychrophile Pseudoalteromonas haloplanktisMar Biotechnol (NY).20057(5):523531. doi:10.1007/s10126-004-5098-2Medline15988629Open DOISearch in Google Scholar

Murado MA, Vázquez JA. Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathema tical model and its implications on hormesis. BMC Microbiol. 2010;10:220. MedlineMuradoMAVázquezJA.Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathema tical model and its implications on hormesisBMC Microbiol.201010220Medline10.1186/1471-2180-10-220293635520723220Search in Google Scholar

Neu TR. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev. 1996;60(1):151–166. MedlineNeuTR.Significance of bacterial surface-active compounds in interaction of bacteria with interfacesMicrobiol Rev.199660(1):151166Medline10.1128/mr.60.1.151-166.19962394238852899Search in Google Scholar

Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656. doi:10.1128/MMBR.67.4.593-656.2003 MedlineNikaidoH.Molecular basis of bacterial outer membrane permeability revisitedMicrobiol Mol Biol Rev.200367(4):593656. doi:10.1128/MMBR.67.4.593-656.2003Medline30905114665678Open DOISearch in Google Scholar

Nikolić M, Vasić S, Djurdjevic J, Stefanović O, Čomić L. Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe)) ethanolic extract. Kragujevac J Sci. 2014;36(36):129–136. doi:10.5937/KgJSci1436129NNikolićMVasićSDjurdjevicJStefanovićOČomićL.Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe)) ethanolic extractKragujevac J Sci.201436(36):129136. doi:10.5937/KgJSci1436129NOpen DOISearch in Google Scholar

Nithya C, Pandian SK. The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Arch Microbiol. 2010;192(10):843–854. doi:10.1007/s00203-010-0612-6 MedlineNithyaCPandianSK.The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio sppArch Microbiol.2010192(10):843854. doi:10.1007/s00203-010-0612-6Medline20697692Open DOISearch in Google Scholar

Nor Afifah S, Darah I, Sharifah Radziah MN, Wan Norhana MN, Ahmad I. Inhibition of fouling bacteria by the marine epiphytes from selected locations in Malaysia. Mal J Sci. 2017;36(1):17–21.Nor AfifahSDarahISharifah RadziahMNWan NorhanaMNAhmadI.Inhibition of fouling bacteria by the marine epiphytes from selected locations in MalaysiaMal J Sci.201736(1):1721Search in Google Scholar

O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54(1):49–79. doi:10.1146/annurev.micro.54.1.49 MedlineO’TooleGKaplanHBKolterR.Biofilm formation as microbial developmentAnnu Rev Microbiol.200054(1):4979. doi:10.1146/annurev.micro.54.1.49MedlineOpen DOISearch in Google Scholar

Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66(2):86–92. MedlineOlsonMECeriHMorckDWBuretAGReadRR.Biofilm bacteria: formation and comparative susceptibility to antibioticsCan J Vet Res.200266(2):8692MedlineSearch in Google Scholar

Park NH, Choi JS, Hwang SY, Kim YC, Hong YK, Cho K, Choi I, Choi IS. Antimicrobial activities of stearidonic and gammalinolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria. Bot Stud (Taipei, Taiwan). 2013;54(1):39. doi:10.1186/1999-3110-54-39 MedlineParkNHChoiJSHwangSYKimYCHongYKChoKChoiIChoiIS.Antimicrobial activities of stearidonic and gammalinolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteriaBot Stud (Taipei, Taiwan).201354(1):39. doi:10.1186/1999-3110-54-39MedlineOpen DOISearch in Google Scholar

Parsons JB, Yao J, Frank MW, Jackson P, Rock CO. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J Bacteriol. 2012; 194(19):5294–5304. doi:10.1128/JB.00743-12 MedlineParsonsJBYaoJFrankMWJacksonPRockCO.Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureusJ Bacteriol.2012194(19):52945304. doi:10.1128/JB.00743-12MedlineOpen DOISearch in Google Scholar

Pearson JP, Van Delden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cellto-cell signals. J Bacteriol. 1999;181(4):1203–1210. MedlinePearsonJPVan DeldenCIglewskiBH.Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cellto-cell signalsJ Bacteriol.1999181(4):12031210Medline10.1128/JB.181.4.1203-1210.1999Search in Google Scholar

Ponnusamy K, Kappachery S, Thekeettle M, Song JH, Kweon JH. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces. World J Microbiol Biotechnol. 2013;29(9):1695–1703. doi:10.1007/s11274-013-1332-2 MedlinePonnusamyKKappacherySThekeettleMSongJHKweonJH.Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfacesWorld J Microbiol Biotechnol.201329(9):16951703. doi:10.1007/s11274-013-1332-2MedlineOpen DOISearch in Google Scholar

Poole K. Stress responses as determinants of antimicrobial resis tance in Gram-negative bacteria. Trends Microbiol. 2012;20(5):227–234. doi:10.1016/j.tim.2012.02.004 MedlinePooleK.Stress responses as determinants of antimicrobial resis tance in Gram-negative bacteriaTrends Microbiol.201220(5):227234. doi:10.1016/j.tim.2012.02.004MedlineOpen DOISearch in Google Scholar

Qi SH, Xu Y, Xiong HR, Qian PY, Zhang S. Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbiol Biotechnol. 2009;25(3):399–406. doi:10.1007/s11274-008-9904-2QiSHXuYXiongHRQianPYZhangS.Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14World J Microbiol Biotechnol.200925(3):399406. doi:10.1007/s11274-008-9904-2Open DOISearch in Google Scholar

Rao D, Webb JS, Holmström C, Case R, Low A, Steinberg P, Kjelleberg S. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl Environ Microbiol. 2007;73(24):7844–7852. doi:10.1128/AEM.01543-07 MedlineRaoDWebbJSHolmströmCCaseRLowASteinbergPKjellebergS.Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organismsAppl Environ Microbiol.200773(24):78447852. doi:10.1128/AEM.01543-07MedlineOpen DOISearch in Google Scholar

Sailer FC, Meberg BM, Young KD. beta-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett. 2003;226(2):245–249. doi:10.1016/S0378-1097(03)00616-5 MedlineSailerFCMebergBMYoungKD.beta-Lactam induction of colanic acid gene expression in Escherichia coliFEMS Microbiol Lett.2003226(2):245249. doi:10.1016/S0378-1097(03)00616-5MedlineOpen DOISearch in Google Scholar

Santhakumari S, Kannappan A, Pandian SK, Thajuddin N, Rajendran RB, Ravi AV. Inhibitory effect of marine cyanobacterial extract on biofilm formation and virulence factor production of bacterial pathogens causing vibriosis in aquaculture. J Appl Phycol. 2016;28(1):313–324. doi:10.1007/s10811-015-0554-0SanthakumariSKannappanAPandianSKThajuddinNRajendranRBRaviAV.Inhibitory effect of marine cyanobacterial extract on biofilm formation and virulence factor production of bacterial pathogens causing vibriosis in aquacultureJ Appl Phycol.201628(1):313324. doi:10.1007/s10811-015-0554-0Open DOISearch in Google Scholar

Schultz MP, Swain GW. The influence of biofilms on skin friction drag. Biofouling. 2000;15(1-3):129–139. doi:10.1080/08927010009386304 MedlineSchultzMPSwainGW.The influence of biofilms on skin friction dragBiofouling.200015(1-3):129139. doi:10.1080/08927010009386304Medline22115298Open DOISearch in Google Scholar

Shin SY, Bajpai VK, Kim HR, Kang SC. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. Lebensm Wiss Technol. 2007;40(9):1515–1519. doi:10.1016/j.lwt.2006.12.005ShinSYBajpaiVKKimHRKangSC.Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganismsLebensm Wiss Technol.200740(9):15151519. doi:10.1016/j.lwt.2006.12.005Open DOISearch in Google Scholar

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729. doi:10.1093/molbev/mst197 MedlineTamuraKStecherGPetersonDFilipskiAKumarS.MEGA6: Molecular evolutionary genetics analysis version 6.0Mol Biol Evol.201330(12):27252729. doi:10.1093/molbev/mst197Medline384031224132122Open DOISearch in Google Scholar

Thenmozhi R, Nithyanand P, Rathna J, Karutha Pandian S. Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol. 2009;57(3):284–294. doi:10.1111/j.1574-695X.2009.00613.x MedlineThenmozhiRNithyanandPRathnaJKarutha PandianS.Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenesFEMS Immunol Med Microbiol.200957(3):284294. doi:10.1111/j.1574-695X.2009.00613.xMedline19845763Open DOISearch in Google Scholar

Townsin RL. The ship hull fouling penalty. Biofouling. 2003; 19(sup1) Suppl:9–15. doi:10.1080/0892701031000088535 MedlineTownsinRL.The ship hull fouling penaltyBiofouling.200319(sup1) Suppl:915. doi:10.1080/0892701031000088535Medline14618699Open DOISearch in Google Scholar

Wang L-L, Johnson EA. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl Environ Microbiol. 1992 Feb; 58(2):624–629. MedlineWangL-LJohnsonEA.Inhibition of Listeria monocytogenes by fatty acids and monoglyceridesAppl Environ Microbiol1992Feb58(2):624629Medline10.1128/aem.58.2.624-629.19921952931610184Search in Google Scholar

Watanabe S, Nagamatsu N, Yokoo K, Kawakami Y. The augmentation in frictional resistance due to slime. J Kansai Soc Nav Arch. 1969;131:45–51.WatanabeSNagamatsuNYokooKKawakamiY.The augmentation in frictional resistance due to slimeJ Kansai Soc Nav Arch.1969131455110.2534/jjasnaoe1968.1969.126_45Search in Google Scholar

Waturangi DE, Bunardi YA, Magdalena S. Antibiofilm activity of bacteria isolated from marine environment in Indonesia against Vibrio cholerae. Res J Microbiol. 2011;6(12):926–930. doi:10.3923/jm.2011.926.930WaturangiDEBunardiYAMagdalenaS.Antibiofilm activity of bacteria isolated from marine environment in Indonesia against Vibrio choleraeRes J Microbiol.20116(12):926930. doi:10.3923/jm.2011.926.930Open DOISearch in Google Scholar

Xu Y, Miao L, Li XC, Xiao X, Qian PY. Antibacterial and anti-larval activity of deep-sea bacteria from sediments of the West Pacific Ocean. Biofouling. 2007;23(2):131–137. doi:10.1080/08927010701219323 MedlineXuYMiaoLLiXCXiaoXQianPY.Antibacterial and anti-larval activity of deep-sea bacteria from sediments of the West Pacific OceanBiofouling.200723(2):131137. doi:10.1080/08927010701219323Medline17453737Open DOISearch in Google Scholar

Zeng Z, Guo XP, Cai X, Wang P, Li B, Yang JL, Wang X. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling. Microb Biotechnol. 2017;10(6):1718–1731. doi:10.1111/1751-7915.12773 MedlineZengZGuoXPCaiXWangPLiBYangJLWangX.Pyomelanin from Pseudoalteromonas lipolytica reduces biofoulingMicrob Biotechnol.201710(6):17181731. doi:10.1111/1751-7915.12773Medline565857928834245Open DOISearch in Google Scholar

Zeng Z, Guo XP, Li B, Wang P, Cai X, Tian X, Zhang S, Yang JL, Wang X. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol. 2015;99(23):10127–10139. doi:10.1007/s00253-015-6865-x MedlineZengZGuoXPLiBWangPCaiXTianXZhangSYangJLWangX.Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activitiesAppl Microbiol Biotechnol.201599(23):1012710139. doi:10.1007/s00253-015-6865-xMedline464310826264135Open DOISearch in Google Scholar

Zheng L, Chen H, Han X, Lin W, Yan X. Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol Biotechnol. 2005;21(2):201–206. doi:10.1007/s11274-004-3318-6ZhengLChenHHanXLinWYanX.Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleveWorld J Microbiol Biotechnol.200521(2):201206. doi:10.1007/s11274-004-3318-6Open DOISearch in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology