Otwarty dostęp

The Effect of Silver Nanoparticles on Listeria monocytogenes PCM2191 Peptidoglycan Metabolism and Cell Permeability


Zacytuj

Alleberger F, Wagner M. 2010. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect. 16:16–23.AllebergerFWagnerM.2010Listeriosis: a resurgent foodborne infectionClin Microbiol Infect.16162310.1111/j.1469-0691.2009.03109.x20002687Search in Google Scholar

Amano K, Hayashi H, Araki Y, Ito E. 1977. The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozyme. Eur J Biochem. 76:299–307.AmanoKHayashiHArakiYItoE.1977The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozymeEur J Biochem.7629930710.1111/j.1432-1033.1977.tb11596.x407083Search in Google Scholar

Barbuddhe SB, Chakraborty T. 2009. Listeria as an enteroinvasive gastrointestinal pathogen. Curr Top Microbiol Immunol. 337: 173–195.BarbuddheSBChakrabortyT.2009Listeria as an enteroinvasive gastrointestinal pathogenCurr Top Microbiol Immunol.33717319510.1007/978-3-642-01846-6_619812983Search in Google Scholar

Bierne H, Cossart P. 2007. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev. 71:377–397.BierneHCossartP.2007Listeria monocytogenes surface proteins: from genome predictions to functionMicrobiol Mol Biol Rev.7137739710.1128/MMBR.00039-06189987717554049Search in Google Scholar

Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escheriochia coli, Pseudomonas aeruginosa and Staphylococcus aures. Lett Appl Microbiol. 48:173–179.BirlaSSTiwariVVGadeAKIngleAPYadavAPRaiMK.2009Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escheriochia coli, Pseudomonas aeruginosa and Staphylococcus auresLett Appl Microbiol.4817317910.1111/j.1472-765X.2008.02510.x19141039Search in Google Scholar

Boneca IG. 2005. The role of peptidoglycan in pathogenesis. Curr Opin Microbiol. 8:46–53.BonecaIG.2005The role of peptidoglycan in pathogenesisCurr Opin Microbiol.8465310.1016/j.mib.2004.12.00815694856Search in Google Scholar

Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot JP, Giovannini M, et al. 2007. A critical role for peptodoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA. 104:997–1002.BonecaIGDussurgetOCabanesDNahoriMASousaSLecuitMPsylinakisEBouriotisVHugotJPGiovanniniM2007A critical role for peptodoglycan N-deacetylation in Listeria evasion from the host innate immune systemProc Natl Acad Sci USA.104997100210.1073/pnas.0609672104176633917215377Search in Google Scholar

Chauhan N, Tyaghi AK, Kumar P, Malik A. 2016. Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front Microbiol. 7:1748.ChauhanNTyaghiAKKumarPMalikA.2016Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogensFront Microbiol.7174810.3389/fmicb.2016.01748509924227877160Search in Google Scholar

Chwalibóg A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A. 2010. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed. 5:1085–1094.ChwalibógASawoszEHotowyASzeligaJMituraSMituraKGrodzikMOrlowskiPSokolowskaA.2010Visualization of interaction between inorganic nanoparticles and bacteria or fungiInt J Nanomed.51085109410.2147/IJN.S13532302323721270959Search in Google Scholar

Gray MJ, Freitag NE, Boor KJ. 2006. How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun. 74:2505–2512.GrayMJFreitagNEBoorKJ.2006How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. HydeInfect Immun.742505251210.1128/IAI.74.5.2505-2512.2006145969316622185Search in Google Scholar

Hamon MA, Ribet D, Stavru F, Cossart P. 2012. Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol. 20:360–368.HamonMARibetDStavruFCossartP.2012Listeriolysin O: the Swiss army knife of ListeriaTrends Microbiol.2036036810.1016/j.tim.2012.04.00622652164Search in Google Scholar

Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanotechnol. 4:141–144.IngleAGadeAPierratSSonnichsenCRaiM.2008Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteriaCurr Nanotechnol.414114410.2174/157341308784340804Search in Google Scholar

Johansen C, Verheul A, Gram L, Gill T, Abee T. 1997. Protamine-induced permeabilization of cell envelopes of Gram-positive and Gram-negative bacteria. Appl Environ Microbiol. 63:1155–1159.JohansenCVerheulAGramLGillTAbeeT.1997Protamine-induced permeabilization of cell envelopes of Gram-positive and Gram-negative bacteriaAppl Environ Microbiol.631155115910.1128/aem.63.3.1155-1159.19971684069055431Search in Google Scholar

Krawczyk-Balska A, Markiewicz Z. 2016. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol. 120:251–265.Krawczyk-BalskaAMarkiewiczZ.2016The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeuticsJ Appl Microbiol.12025126510.1111/jam.1298926509460Search in Google Scholar

Kurek A, Grudniak AM, Szwed M, Klicka A, Samluk Ł, Wolska KI, Janiszowska W, Popowska M. 2010. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie van Leeuwenhoek Int J Gen Mol Microbiol. 97:61–68.KurekAGrudniakAMSzwedMKlickaASamlukŁWolskaKIJaniszowskaWPopowskaM.2010Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenesAntonie van Leeuwenhoek Int J Gen Mol Microbiol.97616810.1007/s10482-009-9388-619894138Search in Google Scholar

Marambio-Jones C, Hoek EMV. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications. J Nanoparticle Res. 12:1531–1551.Marambio-JonesCHoekEMV.2010A review of the antibacterial effects of silver nanomaterials and potential implicationsJ Nanoparticle Res.121531155110.1007/s11051-010-9900-ySearch in Google Scholar

Markowska K, Grudniak AM, Wolska KI. 2013. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 60:523–530.MarkowskaKGrudniakAMWolskaKI.2013Silver nanoparticles as an alternative strategy against bacterial biofilmsActa Biochim Pol.60523530Search in Google Scholar

Markowska K, Grudniak AM, Krawczyk K, Wróbel I, Wolska KI. 2014. Modulation of antibiotic resistance and induction of stress response in Pseudomonas aeruginosa by silver nanoparticles. J Med Microbiol. 63:849–854.MarkowskaKGrudniakAMKrawczykKWróbelIWolskaKI.2014Modulation of antibiotic resistance and induction of stress response in Pseudomonas aeruginosa by silver nanoparticlesJ Med Microbiol.6384985410.1099/jmm.0.068833-024623636Search in Google Scholar

Milczarek BE. 2015. Influence of silver nanoparticles on Listeria monocytogenes cell membranes. Ph. D. Thesis. Warsaw (Poland): University of Warsaw.MilczarekBE.2015Influence of silver nanoparticles on Listeria monocytogenes cell membranesPh. D. ThesisWarsaw (Poland)University of WarsawSearch in Google Scholar

Morones JR, Elechigerra JL, Camacho A, Ramirez JT. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology. 16: 2346–2353.MoronesJRElechigerraJLCamachoARamirezJT.2005The bactericidal effect of silver nanoparticlesNanotechnology.162346235310.1088/0957-4484/16/10/05920818017Search in Google Scholar

Patra JK, Baek KH. 2017. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effect. Front Microbiol. 8:167.PatraJKBaekKH.2017Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effectFront Microbiol.816710.3389/fmicb.2017.00167530923028261161Search in Google Scholar

Popowska M. 2004. Analysis of the peptidoglycan hydrolases of Listeria monocytogenes: multiple enzymes with multiple functions. Pol J Microbiol. 53:29–34.PopowskaM.2004Analysis of the peptidoglycan hydrolases of Listeria monocytogenes: multiple enzymes with multiple functionsPol J Microbiol.532934Search in Google Scholar

Popowska M, Kusio M, Szymańska P, Markiewicz Z. 2009. Inactivation of the wall-associated de-N-acetylase (PgdA) of Listeria monocytogenes results in greater susceptibility of the cells to induced autolysis. J Microbiol Biotechnol. 19:932–945.PopowskaMKusioMSzymańskaPMarkiewiczZ.2009Inactivation of the wall-associated de-N-acetylase (PgdA) of Listeria monocytogenes results in greater susceptibility of the cells to induced autolysisJ Microbiol Biotechnol.1993294510.4014/jmb.0810.55719809250Search in Google Scholar

Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 27:76–83.RaiMYadavAGadeA.2009Silver nanoparticles as a new generation of antimicrobialsBiotechnol Adv.27768310.1016/j.biotechadv.2008.09.00218854209Search in Google Scholar

Rice KC, Bayles KW. 2008. Molecular control of bacterial death and lysis. Microbiol Mol Biol Bev. 72:85–109.RiceKCBaylesKW.2008Molecular control of bacterial death and lysisMicrobiol Mol Biol Bev.728510910.1128/MMBR.00030-07226828018322035Search in Google Scholar

Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian SM. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity against Staphylococcus aureus and Escherichia coli. Nanomedicine 3: 168–171.ShahverdiARFakhimiAShahverdiHRMinaianSM.2007Synthesis and effect of silver nanoparticles on the antibacterial activity against Staphylococcus aureus and Escherichia coliNanomedicine316817110.1016/j.nano.2007.02.00117468052Search in Google Scholar

Singh M, Singh S, Prasada S, Gambhir IS. 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomat Biostruct. 3:115–122.SinghMSinghSPrasadaSGambhirIS.2008Nanotechnology in medicine and antibacterial effect of silver nanoparticlesDigest J Nanomat Biostruct.3115122Search in Google Scholar

Smith JL, McColgan C, Marmer BS. 1991. Growth temperature and the action of lysozyme on Listeria monocytogenes. J Food Sci. 56:1101–1102.SmithJLMcColganCMarmerBS.1991Growth temperature and the action of lysozyme on Listeria monocytogenesJ Food Sci.561101110210.1111/j.1365-2621.1991.tb14651.xSearch in Google Scholar

Stapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. 2011. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem. 83:4453–4488.StapsfordKETynerKMDairBJDeschampsJRMedintzIL.2011Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniquesAnal Chem.834453448810.1021/ac200853a21545140Search in Google Scholar

Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA. 2014 Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C Mater Biol Appl. 40:24–31.TamayoLAZapataPAVejarNDAzócarMIGulppiMAZhouXThompsonGERabagliatiFMPáezMA.2014Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenesMater Sci Eng C Mater Biol Appl.40243110.1016/j.msec.2014.03.03724857461Search in Google Scholar

Vázquez-Bolland JA, Kuhn M, Berche P, Chakraborthy T, Dominguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. 2001. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev. 14:584–640.Vázquez-BollandJAKuhnMBerchePChakraborthyTDominguez-BernalGGoebelWGonzález-ZornBWehlandJKreftJ.2001Listeria pathogenesis and molecular virulence determinantsClin Microbiol Rev.1458464010.1128/CMR.14.3.584-640.20018899111432815Search in Google Scholar

Wolska KI, Grudniak AM, Kamiński K, Markowska K. 2015. The potential of metal nanoparticles for inhibition of bacterial biofilms. In: Rai M, Kon K, editors. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. Amsterdam (Netherlands): AP Elsevier. p. 119–132.WolskaKIGrudniakAMKamińskiKMarkowskaK.2015The potential of metal nanoparticles for inhibition of bacterial biofilms. In:RaiMKonK, editors.Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious DiseasesAmsterdam (Netherlands)AP Elsevier. p.11913210.1016/B978-0-12-801317-5.00008-6Search in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology