Zacytuj

Figure 1:

Steinernema sandneri n. sp. A: infective juvenile, anterior region; B: first-generation male, anterior region; C: first-generation female, tail region; D: first-generation female, vulval region; E: infective juvenile, tail region; F: first-generation male, tail region; G: spicule; H: gubernaculum. Scale bars as on images. Lateral views.
Steinernema sandneri n. sp. A: infective juvenile, anterior region; B: first-generation male, anterior region; C: first-generation female, tail region; D: first-generation female, vulval region; E: infective juvenile, tail region; F: first-generation male, tail region; G: spicule; H: gubernaculum. Scale bars as on images. Lateral views.

Figure 2:

Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of infective juveniles. A – amphid openings, An – anus, BP – bacterial pouch, CP – cephalic papillae, EP – excretory pore, ES – esophagus, F – phasmid opening, H – hyaline part, LF – lateral fields, NR – nerve ring. Scale bars as on images.
Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of infective juveniles. A – amphid openings, An – anus, BP – bacterial pouch, CP – cephalic papillae, EP – excretory pore, ES – esophagus, F – phasmid opening, H – hyaline part, LF – lateral fields, NR – nerve ring. Scale bars as on images.

Figure 3.

Steinernema sandneri n. sp. Scanning electron micrographs of first-generation males. A,B: anterior region with excretory pore (EP), deirids (D), cephalic (CP) and labial papillae (LP). C,D: posterior region with genital papillae (arrows), single preanal papilla (S-PA) and mucron (Mu). Scale bars as on images.
Steinernema sandneri n. sp. Scanning electron micrographs of first-generation males. A,B: anterior region with excretory pore (EP), deirids (D), cephalic (CP) and labial papillae (LP). C,D: posterior region with genital papillae (arrows), single preanal papilla (S-PA) and mucron (Mu). Scale bars as on images.

Figure 4:

Steinernema sandneri n. sp. Differential interference contrast micrographs of first- (A,B,E,F,G) and second-generation males (C,D). A,C: anterior region with esophagus (ES), excretory pore (EP) and nerve ring (NR). B,D: posterior region with spicules, gubernaculum, and mucron (Mu). E: spicules. F,G: gubernaculum (lateral and ventral view). Scale bars as on images.
Steinernema sandneri n. sp. Differential interference contrast micrographs of first- (A,B,E,F,G) and second-generation males (C,D). A,C: anterior region with esophagus (ES), excretory pore (EP) and nerve ring (NR). B,D: posterior region with spicules, gubernaculum, and mucron (Mu). E: spicules. F,G: gubernaculum (lateral and ventral view). Scale bars as on images.

Figure 5:

Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of first-generation females. An – anus, EP – excretory pore, ES – esophagus, LP – labial papillae, NR – nerve ring, V – vulva. Scale bars as on images.
Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of first-generation females. An – anus, EP – excretory pore, ES – esophagus, LP – labial papillae, NR – nerve ring, V – vulva. Scale bars as on images.

Figure 6:

Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the ITS rDNA. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G model. All positions containing gaps were eliminated. There were a total of 646 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.
Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the ITS rDNA. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G model. All positions containing gaps were eliminated. There were a total of 646 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.

Figure 7:

Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the D2D3 regions. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the GTR + G model. All positions containing gaps were eliminated. There were a total of 850 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.
Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the D2D3 regions. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the GTR + G model. All positions containing gaps were eliminated. There were a total of 850 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.

Figure 8:

Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on cox1 gene sequences. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G + I model. All positions containing gaps were eliminated. There were a total of 567 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.
Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on cox1 gene sequences. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G + I model. All positions containing gaps were eliminated. There were a total of 567 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.

Morphometrics (in μm) of different developmental stages of Steinernema sandneri n. sp. [mean ± SE (range)] [N = 25].

First generation Second generation
Males Females Males Females Infective juveniles
Character Holotype Paratypes Paratypes Paratypes Paratypes Paratypes
Body length [L] 1,565.3 1,461 ± 22.1 (1,205.7–1,635.3) 4,628 ± 46.4 (4,244.0–5,014.0) 946 ± 13.8 (817.5–1,093.8) 2,120 ± 51.5 (1,640.6–2,753.2) 843.0 ± 13.9 (708.2–964.5)
Greatest body width [W] 143.0 155.1 ± 2.7 (123.8–177.7) 209.6 ± 3.4 (181.3–261.3) 70.1 ± 1.1 (54.9–79.5) 126.6 ± 3.3 (88.9–146.6) 27.4 ± 0.5 (23.0–31.9)
Anterior end to excretory pore [EP] 88.4 80.4 ± 1.5 (63.5–92.4) 84.4 ± 2.1 (61.4–101.6) 69.8 ± 1.5 (59.0–84.6) 72.1 ± 1.3 (57.3–88.4) 55.9 ± 0.8 (44.4–64.2)
Anterior end to nerve ring [NR] 121.9 126.0 ± 1.5 (112.0–138.1) 146.7 ± 1.2 (132.5–157.6) 97.7 ± 0.8 (86.4–105.8) 113.7 ± 1.1 (102.5–124.6) 102.6 ± 1.4 (82.6–117.9)
Anterior end to esophagus [ES] 155.9 157.2 ± 1.1 (147.6–169.6) 184.7 ± 1.0 (173.2–193.9) 120.5 ± 1.1 (109.0–128.7) 145.8 ± 1.4 (130.3–158.5) 138.4 ± 0.5 (122.5–150.5)
Testis reflection 461.6 452.1 ± 9.5 (359.3–537.7) 202.6 ± 13.2 (84.9–379.2)
Tail length [T] 45.1 41.2 ± 0.5 (35.4–45.5) 46.7 ± 1.6 (32.4–60.9) 42.3 ± 1.0 (31.7–52.1) 57.5 ± 1.4 (46.5–72.1) 75.2 ± 1.1 (64.4–86.4)
Anal body diameter [ABW] 50.1 54.1 ± 0.6 (49.9–59.2) 94.0 ± 2.9 (62.1–121.8) 36.8 ± 0.4 (30.7–40.8) 54.4 ± 1.5 (43.1–70.7) 17.3 ± 0.4 (14.6–23.8)
Spicule length [SL] 64.2 59.8±0.5 (52.6–65.3) 51.2 ± 0.9 (42.5–60.2)
Gubernaculum length [GL] 39.2 43.6 ± 0.5 (39.1–50.2) 30.4 ± 0.6 (24.2–39.5)
a [L/W] 10.9 9.5 ± 0.1 (8.5–11.0) 22.2 ± 0.4 (17.4–24.7) 13.6 ± 0.2 (12.0–16.4) 16.9 ± 0.4 (14.1–23.2) 30.9 ± 0.3 (27.2–33.8)
b [L/ES] 10.4 9.3 ± 0.1 (8.0–10.2) 25.1 ± 0.2 (23.5–27.2) 7.9 ± 0.1 (7.2–9.4) 14.5±0.3 (12.0–18.1) 6.1 ± 0.1 (5.5–6.9)
c [L/T] 34.7 35.6 ± 0.5 (31.2–41.9) 102.0 ± 3.8 (75.4–140.3) 22.7 ± 0.6 (17.2–28.5) 37.3 ± 1.1 (24.6–50.1) 11.2 ± 0.1 (10.5–13.2)
Hyaline% [(H/T) × 100] 33.6 ± 3.9 (22.7–39.9)
D% [(EP/ES) × 100] 56.7 51.2 ± 0.9 (42.1–59.3) 45.7 ± 1.1 (35.5–54.2) 58.0±1.2 (48.1–71.9) 49.5 ± 0.9 (36.2–58.1) 40.4 ± 0.4 (35.8–44.8)
E% [(EP/T) × 100] 196.0 195.8 ± 4.0 (160.2–240.9) 186.0 ± 7.9 (128.1–266.8) 167.4 ± 1.2 (128.2–222.8) 127.2 ± 3.9 (101.4–163.9) 74.4 ± 0.9 (62.6–85.8)
SW% [(SL/ABW) × 100] 128.1 110.9 ± 1.5 (97.0–126.9) 139.6 ± 3.2 (105.1–171.4)
GS% [(GL/SL) × 100] 61.1 79.1 ± 1.2 (60.8–82.8) 59.6 ± 1.1 (49.5–68.6)
V% [(Vulva – anterior end/L) × 100] 53.7 ± 0.3 (49.0–56.8) 54.3 ± 0.8 (39.3–59.1)

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of cox1 gene of S. sandneri n. sp. and other closely related Steinernema spp.

Species Acc. no. 1 2 3 4 5 6 7 8 9 10 11
1 S. sandneri n. sp. MW078544 93.7 93.8 92.9 87.7 86.6 88.4 84.7 86.4 85.9 85.7
2 S. kraussei JN683829 36 94.4 94.0 87.1 86.4 87.3 84.1 85.7 84.5 85.0
3 S. kraussei AY943990 35 32 95.6 87.8 86.8 86.7 85.0 86.2 85.2 85.4
4 S. kraussei * MW647850 40 34 25 86.2 86.4 86.9 83.6 85.7 84.5 85.4
5 S. silvaticum MG547572 70 73 68 78 84.7 85.4 83.6 83.5 82.9 84.7
6 S. oregonense AY943995 76 77 75 77 87 87.8 85.5 86.6 83.4 86.8
7 S. feltiae JQ423217 66 72 75 74 83 69 85.9 88.0 84.0 96.9
8 S. jollieti GU569068 87 90 85 93 93 82 80 85.0 84.7 84.1
9 S. weiseri GU569075 77 81 78 81 99 76 68 85 82.7 84.8
10 S. kushidai AY943991 80 88 84 88 97 94 91 87 98 84.5
11 S. monticolum AY943994 81 85 83 83 87 75 74 90 86 88

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of ITS rDNA of S. sandneri n. sp. and other closely related Steinernema spp.

Species Acc. no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 S. sandneri n. sp. MW078536 97.0 94.5 92.4 90.2 94.1 94.1 94.5 89.6 89.8 89.0 89.4 90.3 88.7 85.8 76.6
2 S. kraussei AY230174 21 95.2 92.1 90.4 90.5 93.8 94.9 88.6 89.2 88.6 89.1 89.4 88.0 85.2 76.0
3 S. silvaticum AY230162 37 31 92.0 90.4 90.2 92.6 94.6 88.8 89.4 89.2 88.9 89.6 88.0 84.8 75.8
4 S. cholashanense EF431959 51 48 50 94.2 97.2 93.2 94.2 91.3 92.7 91.7 92.8 92.2 91.8 86.6 77.5
5 S. oregonense AF122019 59 56 59 33 93.5 92.0 92.1 89.9 91.5 89.7 91.2 90.4 90.4 86.8 76.6
6 S. xueshanense FJ660052 67 59 63 17 41 91.3 92.1 90.3 91.2 89.0 91.2 89.8 89.9 85.6 76.9
7 S. tielingense GU994201 41 42 51 42 48 56 94.8 89.9 89.5 89.7 90.5 90.1 89.2 86.2 77.2
8 S. xinbinense JN171593 35 34 36 35 47 50 34 90.8 90.8 90.2 91.5 91.0 90.6 86.6 77.0
9 S. feltiae AF121050 73 73 74 57 60 61 68 60 95.8 91.4 94.0 93.4 94.4 88.9 76.1
10 S. ichnusae EU421129 71 70 71 50 52 55 71 62 28 91.8 95.5 93.9 85.2 88.6 76.9
11 S. jollieti AY171265 76 73 70 53 61 62 67 63 54 46 91.1 90.0 91.1 86.1 77.3
12 S. weiseri AY171268 72 69 73 48 52 55 62 55 39 32 51 94.5 96.6 89.0 77.0
13 S. nguyeni KP325084 67 69 70 53 60 61 67 61 47 43 56 39 92.9 87.9 76.4
14 S. litorale AB243441 78 78 80 57 59 61 73 63 38 34 46 24 44 88.7 77.2
15 S. hebeiense DQ105794 98 97 102 92 84 90 93 90 76 80 82 77 81 74 74.9
16 S. monticolum AF122017 140 139 142 133 134 133 132 134 143 135 120 134 132 132 143

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of D2D3 domain of 28 S rDNA of S. sandneri n. sp. and other closely related Steinernema spp.

Species Acc. no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 S. sandneri n. sp. MW078535 98.2 98.2 98.2 96.2 97.5 97.5 96.8 96.8 96.6 96.1 97.0 95.7 92.4
2 S. kraussei AF331896 15 99.8 99.8 97.2 98.2 98.9 97.6 98.2 97.9 97.4 98.1 96.2 92.6
3 S. kraussei GU569053 15 2 99.5 97.2 98.6 99.1 97.8 98.5 98.1 97.6 98.1 96.6 92.7
4 S. kraussei * MW647849 15 2 4 97.2 98.2 98.9 97.7 98.2 97.8 97.3 97.0 95.7 92.9
5 S. silvaticum MG547576 32 24 24 24 97.2 96.8 96.1 96.6 96.1 95.7 96.7 94.7 91.1
6 S. cholashanense EF520284 21 14 12 14 24 98.4 97.5 98.1 97.7 97.2 97.8 96.4 92.7
7 S. oregonense AF331891 21 9 7 11 27 14 97.9 98.7 98.2 98.0 98.6 96.9 93.4
8 S. xueshanense FJ666053 27 19 19 19 33 20 18 98.0 97.9 97.3 98.1 96.6 92.7
9 S. feltiae AF3311906 27 15 13 17 29 16 11 17 99.3 98.8 99.4 97.2 93.3
10 S. ichnusae EU421130 28 18 16 18 32 19 14 17 5 98.6 98.9 97.2 93.3
11 S. jollieti GU569051 32 22 20 24 36 23 16 22 9 12 98.9 96.7 93.1
12 S. weiseri GU569059 26 16 16 18 28 19 12 16 5 8 9 97.1 93.7
13 S. texanum EF152569 37 31 29 31 45 30 26 28 24 23 27 25 93.1
14 S. monticolum EF439651 56 53 53 54 69 56 49 56 51 52 54 49 53

Steinernema sandneri n. sp. – permanent slides description and designation numbers in the collection of Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland.

Slide description Slide ID
Slide no. 1 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae) (male), holotype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/1
Slide no. 2 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 55 infective juveniles, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/2
Slide no. 3 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 36 infective juveniles, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/3
Slide no. 4 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017 MIZ PAN WARSZAWA 2-2021/4
Slide no. 5 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017 MIZ PAN WARSZAWA 2-2021/5
Slide no. 6 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017 MIZ PAN WARSZAWA 2-2021/6
Slide no. 7 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017 MIZ PAN WARSZAWA 2-2021/7
Slide no. 8 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/8
Slide no. 9 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/9
Slide no. 10 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/10
Slide no. 11 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/11
Slide no. 12 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017 MIZ PAN WARSZAWA 2-2021/12
Slide no. 13 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/13
Slide no. 14 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 13 (females), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/14
Slide no. 15 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 15 (females), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/15
Slide no. 16 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 9 (females), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/16
Slide no. 17 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 13 (males), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/17
Slide no. 18 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 15 (males), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/18
Slide no. 19 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 15 (males), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017 MIZ PAN WARSZAWA 2-2021/19

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of ITS rDNA regions of S. sandneri n. sp., S. kraussei and S. silvaticum isolates, the closest relatives.

Species Acc. no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 S. sandneri MW078536 97.0 97.7 97.7 97.5 97.5 97.2 97.7 97.5 96.6 96.5 96.3 96.0 95.0 94.9 94.5
2 S. kraussei AY230174 21 98.1 98.1 97.9 97.9 98.1 97.2 95.7 98.1 98.2 97.5 97.5 95.4 95.3 94.9
3 S. kraussei AY171270 17 13 99.2 98.5 98.5 99.6 98.6 98.2 100 99.3 99.4 98.3 96.1 96.0 95.6
4 S. kraussei AY171248 16 12 5 99.0 99.0 99,0 99.0 97.3 99.2 98.9 98.6 97.6 95.7 95.6 95.2
5 S. kraussei* KY819012 18 14 11 6 99.7 98.2 99.6 96.6 98.5 98.9 97.9 97.2 95.3 95.2 94.8
6 S. kraussei AY171264 18 14 11 6 2 98.2 99.9 86.6 98.5 99.2 97.9 96.9 95.3 95.2 94.8
7 S. kraussei AB243442 20 13 3 6 13 13 98.2 97.8 99.6 98.9 99.0 98.3 96.3 96.1 95.7
8 S. kraussei AY230175 17 14 10 6 3 1 13 96.8 98.6 99.3 98.1 96.9 95.5 95.3 94.9
9 S. kraussei JN683825 17 14 1 6 12 12 4 11 99.2 98.5 99.5 98.3 96.1 96.0 95.6
10 S. kraussei AY171258 17 13 0 5 11 11 3 10 1 99.3 98.6 98.3 96.1 96.0 95.6
11 S. kraussei AY230176 18 12 5 7 8 6 8 5 6 5 98.0 97.6 95.6 95.5 95.0
12 S. kraussei* MW647848 20 16 3 8 14 14 6 13 4 3 8 97.8 95.6 95.5 95.0
13 S. kraussei AY230161 28 15 11 15 19 21 11 21 10 11 16 14 95.3 95.1 94.7
14 S. silvaticum MG543845 34 30 26 28 32 32 25 31 24 26 30 29 31 99.9 99.4
15 S. silvaticum AY171255 35 31 27 29 33 33 26 32 25 27 31 30 32 2 99.6
16 S. silvaticum AY230162 37 33 29 31 35 35 28 34 26 29 32 32 34 3 2

Details on taxa used in the molecular analyses.

GeneBank accession no.
Species Isolate name/geographic origin ITS rDNA 28S rDNA cox1
Steinernema sandneri n. sp. S17-050, Poland MW078536 MW078535 MW078544
Steinernema affine B1, England AF331899
Steinernema affine The Netherlands AY171298
Steinernema akhursti China DQ375757
Steinernema bicornutum Serbia AF331904
Steinernema bicornutum Yugoslavia AF121048
Steinernema cameroonense OB, Cameroon JX985267
Steinernema carpocapsae Russia AY171282
Steinernema cholashanense Tibet, China EF431959 EF520284
Steinernema citrae 141-C, South Africa EU740970 GU004534
Steinernema costaricense Costa Rica EF187017
Steinernema feltiae Bodega Bay, USA AF331906
Steinernema feltiae SN, USA AF121050
Steinernema feltiae 3, Portugal JQ423217
Steinernema glaseri NC, USA AF331908
Steinernema glaseri NJ, USA AF122015
Steinernema hebeiense G6, China DQ105794
Steinernema hermaphroditum VK-2013, India KC252604
Steinernema ichnusae Sardinia, Italy EU421129 EU421130
Steinernema jollieti Monsanto, USA GU569051 GU569068
Steinernema jollieti 73, USA AY171265
Steinernema kraussei Westphalia, Germany AY230175 AF331896 AY943990
Steinernema kraussei Altai 35, Russia AY171270
Steinernema kraussei Nash, UK AY230176
Steinernema kraussei Italy AY230174
Steinernema kraussei Iceland AY171248
Steinernema kraussei 20F, Portugal JN683825
Steinernema kraussei D, Switzerland AY171258
Steinernema kraussei Russia AY171264
Steinernema kraussei HkHm22, Japan AB243442
Steinernema kraussei Skr-LUB, Lublin, Poland KY819012
Steinernema kraussei B2, UK AY230161
Steinernema kraussei 20F, Portugal JN683829
Steinernema kraussei Quebec, Canada GU569053
Steinernema kraussei SKR S11-50, Poland MW647848 MW647849 MW647850
Steinernema kushidai Hamakita, Japan AB243440
Steinernema kushidai N22, Japan AY943991
Steinernema kushidai Japan AF331897
Steinernema litorale AiAt199, Japan AB243441
Species Isolate name/geographic origin GeneBank accession no.
ITS rDNA 28S rDNA cox1
Steinernema monticolum Korea, South Korea AF122017 EF439651
Steinernema monticulum Mt. Chiri, South Korea AY943994
Steinernema nguyeni F2, South Africa KP325084
Steinernema oregonense Oregon, USA AF122019
Steinernema oregonense OS-10, USA AF331891 AY943995
Steinernema sangi Vietnam AY355441 GU569057
Steinernema scarabaei New Jersey, USA AY172023
Steinernema scarabaei Chile FJ263673
Steinernema silvaticum S16/019, Poland MG543845 MG547576 MG547572
Steinernema silvaticum B, Germany AY171255
Steinernema silvaticum B3, UK (type) AY230162
Steinernema texanum Texas, USA EF152568 EF152569
Steinernema tielingense LFS65, China GU994201 GU994202
Steinernema weiseri F, Germany AY171268
Steinernema weiseri Turkey GU569059 GU569075
Steinernema xinbinense LFS8, China JN171593
Steinernema xinbinense LFS40, China GU994202
Steinernema xueshanense Yunnan, China FJ666052 FJ666053
Caenorhabditis elegans N2 Bristol, USA NC001328
Caenorhabditis elegans X03680 X03680

Comparative morphometrics of third-stage infective juveniles of S. sandneri n. sp. and related Steinernema spp.

Morphometric character a
Species L W EP NR ES T a b c D% E% Reference
S. kushidai 589 (424–662) 26 (22–31) 46 (42–50) 76 (70–84) 111 (106–120) 50 (44–59) 22.5 (19–25) 5.3 (4.9–5.9) 11.7 (10–13) 41 (38–44) 92 (NA) Mamiya, (1988)
S. hebeiense 658 (610–710) 26 (23–28) 48 (43–51) 78 (73–83) 107 (100–111) 66 (63–71) 26 (24–28) 6.2 (5.7–6.7) 10 (9.4–11) 45 (40–50) 72 (65–80) Chen et al. (2006)
S. puntauvense 670 (631–728) 33 (31–38) 25 (20–30) 54 (46–69) 94 (81–103) 54 (51–59) 20 (17–23) 6.1 (7.1–7.9) 12 (11–13) 42 (25–50) 44 (35–56) Uribe–Lorío et al. (2007)
S. xinbinense 694 (635–744) 30 (28–31) 51 (46–53) 86 (75–90) 116 (109–125) 73 (65–78) 24 (21–25) 6.1 (5–7) 9.7 (8–11) 44 (40–47) 71 (65–78) Ma et al. (2012)
S. jollieti 711 (625–820) 23 (20–28) 60 (53–65) NA 123 (115–135) 68 (60–73) 31 (25–34) 5.7 (4.9–6.4) 10.5 (9.0–11.7) 48 (46–50) 88 (NA) Spiridonov et al. (2004b)
S. nguyeni 737 (673–796) 25 (22–28) 52 (47–58) 80 (74–86) 110 (101–121) 67 (61–73) 29 (27–33) 6.7 (6.2–7.4) 11 (10–12) 48 (43–57) 79 (70–86) Malan et al. (2016)
S. weiseri 740 (586–828) 25 (24–29) 57 (43–65) 84 (72–92) 113 (95–119) 60 (49–68) 29 (25–33) 6.6 (5.7–7.2) 12 (10–14) 51 (44–55) 95 (NA) Mráček et al. (2003)
S. sangi 753 (704–784) 35 (30–40) 52 (46–54) 91 (78–97) 127 (120–138) 81 (76–89) 22 (19–25) 5.9 (5.6–6.3) 9.3 (8.7–10.2) 40 (36–44) 62 (56–70) Phan et al. (2001)
S. citrae 754 (623–849) 26 (23–28) 56 (49–64) 98 (83–108) 125 (118–137) 71 (63–81) 30 (25–34) 6.0 (5.1–7.1) 15 (13–14) 44 (39–58) 110 (85–132) Stokwe et al. (2011)
S. texanum 756 (732–796) 30 (29–34) 59 (52–62) 92 (84–102) 115 (111–120) 73 (60–79) 25 (22–27) 6.5 (6.2–7.0) 10 (9.6–12.5) 51 (46–53) 81 (76–88) Nguyen et al. (2007)
S. akhursti 812 (770–835) 33 (33–35) 59 (55–60) 90 (83–95) 119 (115–123) 73 (68–75) 24 (23–26) 6.8 (6.6–7.2) 11 (10–12) 47 (45–50) 77 (73–86) Qiu et al. (2005)
S. sandneri n. sp. 843 (708965) 27 (2332) 56 (4464) 103 (83118) 138 (123151) 75 (6486) 31 (2734) 6.1 (5.56.9) 11.2 (1113.2) 40 (3645) 74 (6386)
S. cholashanense 843 (727–909) 30 (26–35) 62 (59–65) 87 (72–97) 125 (110–138) 73 (60–80) 28 (24–34) 6.8 (6.1–7.2) 12 (10–14) 49 (46–53) 81 (76–91) Nguyen et al., (2008)
S. feltiae 849 (766–928) 29 (22–32) 63 (58–67) 113 (108–117) 136 (130–143) 86 (81–89) 30 (27–34) 6.4 (5.8–6.8) 10 (9.4–11) 46 (44–50) 74 (67–81) Nguyen et al., (2007)
S. silvaticum 860 (670–975) 30 (26–35) 62 (51–73) 96 (75–109) 121 (100–141) 75 (63–86) 29 (23–33) 7.3 (6.3–7.7) 11.4 (9.9–13.1) 50 (46–56) Sturhan et al. (2005)
S. xueshanense 860 (768–929) 30 (29–33) 67 (60–72) 91 (81–96) 135 (130–143) 87 (80–92) 28 (26–32) 6.4 (5.8–7.0) 9.9 (9.0–11) 50 (46–52) 78 (70–90) Mrácˇek et al. (2009)
S. ichnusae 866 (767–969) 31 (27–35) 63 (59–68) 102 (94–108) 138 (119–148) 81 (76–89) 28 (24–32) 6.3 (5.6–6.9) 11 (8.8–12) 46 (42–49) 77 (68–83) Tarasco et al. (2008)
S. litorale 909 (834–988) 31 (28–33) 61 (54–69) 96 (89–104) 125 (114–133) 83 (72–91) 29.5 (27–31) 7.3 (6.7–7.9) 11 (9.7–11.9) 49 (44–56) 73 (68–84) Yoshida (2004)
S. tielingense 915 (824–979) 35 (32–38) 69 (64–73) 98 (90–105) 128 (120–135) 81 (74–85) 26 (23–28) 7 (6–8) 11 (9–13) 55 (47–61) 88 (85–94) Ma et al. (2012)
S. kraussei 951 (797–1,102) 33 (30–36) 63 (50–66) 105 (99–111) 134 (119–145) 79 (63–86) 29 (NA) 7.1 (NA) 12.1 (NA) 47 (NA) 80 (NA) Nguyen et al. (2007)
S. oregonense 980 (820–1,110) 34 (28–38) 66 (60–72) NA 132 (116–148) 70 (64–78) 30 (24–37) 7.6 (6–8) 14 (12–16) 50 (40–60) 100 (90–110) Liu and Berry (1996)

Comparative morphometrics of first-generation males of S. sandneri n. sp. and related Steinernema spp.

Morphometric character a
Species SL GL W D% SW% GS% MUC b n
S. sandneri n. sp. 60 (5365) 44 (3950) 155 (124178) 51 (4259) 111 (97127) 79 (61-83) P 25
S. akhursti 90 (85–100) 64 (58–68) 131 (115–150) 56 (52–61) 180 (140–200) 71 (65–77) P 20
S. cholashanense 66 (60–71) 39 (32–45) 137 (73–204) 64 (50–85) 115 (92–144) 71 (61–85) P 20
S. citrae 65 (57–80) 44 (32–59) 103 (87–113) 58 (47–67) 198 (156–233) 68 (48–89) P 20
S. costaricense 92 (81–101) 46 (41–51) 128 (89–157) 53 (51–66) 160 (150–170) 49 (45–55) A 19
S. feltiae 70 (65–77) 41 (34–47) 75 (60–90) 60 (51–64) 113 (99–130) 59 (52–61) P 25
S. hebeiense 57 (51–63) 46 (38–50) 86 (74–98) 51 (48–59) 140 (120–170) 80 (60–90) A 20
S. ichnusae 66 (64–67) 44 (43–46) 137 (73–204) 62 (59–65) 139 (120–162) 67 (64–69) A 20
S. jollieti 64 (55–70) 54 (45–60) 115 (98–135) 64 (53–83) 145 (NA) 84 (NA) A 12
S. kraussei 49 (42–53) 33 (29–37) 128 (110–144) 53 (NA) 110 (NA) 67 (NA) P NA
S. kushidai 63 (48–72) 44 (39–60) 97 (75–156) 51 (42–59) 150 (NA) 70 (NA) A 20
S. litorale 75 (67–89) 53 (44–64) 96 (82–111) 40 (34–56) 174 (154–200) 71 (62–81) P 25
S. nguyeni 66 (58–75) 43 (30–55) 82 (58–106) 48 (38–57) 215 (185–279) 66 (46–81) P 20
S. oregonense 71 (65–73) 56 (52–59) 138 (105–161) 73 (64–75) 151 (NA) 79 (NA) A 20
S. puntauvense 77 (71–81) 34 (30–40) 119 (101–139) 67 (45–85) 170 (140–200) 65 (55–75) P 19
S. sangi 63 (58–80) 40 (34–46) 159 (120–225) 49 (42–63) 150 (120–160) 60 (50–70) P 20
S. silvaticum 51 (42–64) 37 (30–43) 65 (52–78) 60 (45–63) NA NA P 26
S. texanum 60 (55–66) 45 (39–53) 99 (81–116) 67 (58–73) 157 (127–203) 75 (62–84) A 20
S. tielingense 88 (79–98) 62 (49–70) 129 (111–159) 71 (64–78) 191 (176–212) 73 (59–82) A 20
S. weiseri 68 (62–72) 53 (46–57) 112 (84–138) 49 (39–60) 180 (150–240) 80 (70–85) A 20
S. xinbinense 56 (49–62) 35 (30–41) 103 (90–126) 45 (41–50) 137 (114–156) 63 (54–72) P 20
S. xueshanense 76 (66–91) 49 (41–60) 144 (97–159) 80 (73–87) 152 (93–172) 64 (58–95) A 20
eISSN:
2640-396X
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other