Otwarty dostęp

First record of Oscheius myriophilus (Poinar, 1986) (Rhabditida: Rhabditidae) from Iran; and its efficacy against two economic forest trees pests, Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) and Hyphantria cunea (Drury, 1773) (Lepidoptera: Erebidae) in laboratory condition


Zacytuj

Figure 1:

Iranian population of Oscheius myriophilus (Poinar, 1986). (A) Pharyngeal region of hermaphrodite; (B: Anterior body region of infective juvenile; (C) Male tail, genital papillae, spicules, and gubernaculum; (D) Posterior body region of hermaphrodite; (E) Infective juvenile tail; (F) Vulval region.
Iranian population of Oscheius myriophilus (Poinar, 1986). (A) Pharyngeal region of hermaphrodite; (B: Anterior body region of infective juvenile; (C) Male tail, genital papillae, spicules, and gubernaculum; (D) Posterior body region of hermaphrodite; (E) Infective juvenile tail; (F) Vulval region.

Figure 2:

Iranian population of Oscheius myriophilus (Poinar, 1986). (A) Anterior body region of hermaphrodite; (B) Anterior body region of male; (C) Part of pharynx (male), (D) Anterior body region of infective juvenile; (E) Vulval region; (F, G) Male tail and genital papillae; (H) Infective juvenile tail; (I) Female rectum; (J) Spicule and tail tip; (K) Hermaphrodite tail (scale bars = 10 µm).
Iranian population of Oscheius myriophilus (Poinar, 1986). (A) Anterior body region of hermaphrodite; (B) Anterior body region of male; (C) Part of pharynx (male), (D) Anterior body region of infective juvenile; (E) Vulval region; (F, G) Male tail and genital papillae; (H) Infective juvenile tail; (I) Female rectum; (J) Spicule and tail tip; (K) Hermaphrodite tail (scale bars = 10 µm).

Figure 3:

Bayesian 50% majority rule consensus tree inferred using partial SSU rDNA sequence of Iranian population of Oscheius myriophilus (Poinar, 1986) under the GTR + G + I model. Bayesian posterior probability values more than 0.50 are given for appropriate clades. The Iranian population is indicated in bold.
Bayesian 50% majority rule consensus tree inferred using partial SSU rDNA sequence of Iranian population of Oscheius myriophilus (Poinar, 1986) under the GTR + G + I model. Bayesian posterior probability values more than 0.50 are given for appropriate clades. The Iranian population is indicated in bold.

Figure 4:

Bayesian 50% majority rule consensus tree inferred using the partial LSU rDNA sequences of Iranian population of Oscheius myriophilus (Poinar, 1986) under the GTR + G + I model. Bayesian posterior probability values more than 0.50 are given for appropriate clades. The sequences of Iranian population are indicated in bold.
Bayesian 50% majority rule consensus tree inferred using the partial LSU rDNA sequences of Iranian population of Oscheius myriophilus (Poinar, 1986) under the GTR + G + I model. Bayesian posterior probability values more than 0.50 are given for appropriate clades. The sequences of Iranian population are indicated in bold.

Figure 5:

Death of Cydalima perspectalis (Walker, 1859) and Hyphantria cunea (Drury, 1773) larvae after exposure to different doses of Oscheius myriophilus (Poinar, 1986) in 24–144 h post treatment in laboratory bioassays. (A) fourth instar larvae of Cydalima perspectalis exposed to Oscheius myriophilus (B) fifth instar larvae of Cydalima perspectalis exposed to nematode (C) fourth instar larvae of H. cunea exposed to nematode (D) fifth instar larvae of Hyphantria cunea exposed to nematode, Log-rank test (Mantel–Cox) on GraphPad Prism software was performed to determine statistical significance for the death curves. *p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001, compared with control.
Death of Cydalima perspectalis (Walker, 1859) and Hyphantria cunea (Drury, 1773) larvae after exposure to different doses of Oscheius myriophilus (Poinar, 1986) in 24–144 h post treatment in laboratory bioassays. (A) fourth instar larvae of Cydalima perspectalis exposed to Oscheius myriophilus (B) fifth instar larvae of Cydalima perspectalis exposed to nematode (C) fourth instar larvae of H. cunea exposed to nematode (D) fifth instar larvae of Hyphantria cunea exposed to nematode, Log-rank test (Mantel–Cox) on GraphPad Prism software was performed to determine statistical significance for the death curves. *p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001, compared with control.

Comparative LC50 and LC90 values of Oscheius myriophilus (Poinar, 1986) for Cydalima perspectalis (Walker, 1859) and Hyphantria cunea (Drury, 1773) at 48 h post-treatment by EPNs

Host Organism χ 2 (df=6) P-value Intercept ± SE Slope ± SE LC50 LC90
C. perspectalis (fourth larval instars) O. myriophilus 66.70 0.000 −0.79 ± 0.06 0.005 ± 0.000 152.70 (68.1–267.1) 400.30 (280.2–802.7)
C. perspectalis (fifth larval instars) O. myriophilus 72.18 0.000 −0.68 ± 0.06 0.005 ± 0.00 74.53 (20.70–133.71) 217.02 (150.92–438.99)
H. cunea (fourth larval instars) O. myriophilus 65.24 0.000 −0.92 ± 0.06 0.005 ± 0.000 197.30 (110.0–339.1) 470.90 (332.3–934.9)
H. cunea (fifth larval instars) O. myriophilus 78.00 0.000 −0.52 ± 0.06 0.005 ± 0.000 99.94 (−20.4–211.27) 346.47 (227.4–906.9)

Morphometrics of Oscheius myriophilus (Poinar, 1986) recovered from Gilan province, north Iran, and comparison with data of the type population, the population from Australia and the population from Turkey

This study Type population studied by Poinar (1986) Sudhaus and Schulte (1989) Erbaş et al. (2017)
Locality Iran California Australia Turkey
Host insect Galleria mellonella Oxidis gracilis (Koch) O. gracilis Gryllotalpa gryllotalpa (L.)
Character Male Hermaphrodite Infective larvae Male Hermaphrodite Infective larvae Male Hermaphrodite Infective larvae
n 20 20 20 10 10 6
L 1,002.1 ± 61.3 1,020 ± 129.6 672.3 ± 71.4 1,270 1,320 564 630.2 ± 31.5
(867–1,053) (862–1,247) (583–791) (830–1,470) (1,200–1,500) (504–611) (841–1,175) (792–1,530) (571.3–693.9)
a 15.3 ± 2.1 19.6 ± 2.1 24.2 ± 1.8 25 ± 2.2
(13.2–18.7) (17.0–22.7) (21.0–27.9) (18.4–21.9) (19.1–21.3) (20.5–28.5)
b 5.1 ± 0.2 5.8 ± 0.5 4.9 ± 0.3 4.7 ± 0.2
(4.8–5.5) (5.0–6.9) (4.6–5.7) (5.16–7.36) (6.8–7.7) (4.0–6.1) (4.2–8.5) (4.3–5.2)
c 18.1 ± 0.9 9.4 ± 0.9 7.1 ± 0.4 9.3 ± 0.9
(16.6–19.2) (8.0–10.9) (6.6–7.9) (14.8–20.4) (2.2–3.5) (14.4–21.8) (8.9–13.0) (8.3–11.6)
c' 1.7 ± 0.07 5.0 ± 0.5 5.5 ± 0.3
(1.5–1.8) (4.1–5.7) (5.1–6.6) (3–4)
V%= (distance from anterior end to vulva/L)×100 49.9 ± 2.0
(45.5–53.1)
Stoma length 17.5 ± 0.5 17.6 ± 0.8 16.1 ± 1.4 17 20
(17–18) (17–20) (14–20) (16–19) (18–21) (18–21)
Stoma width 3.4 ± 0.5 4.2 ± 0.2 2.7 ± 0.3 3.2 3.2
(3–4) (4–4.5) (2.5–4) <4.5
Pharynx length 196 ± 9.7 176.3 ± 17.1 134.5 ± 7.1 187 185 129 134.6 ± 3.2
(180–208) (144–200) (125–145) (161–200) (174–193) (120–136) (128.8–139.8)
Max. body diam. 66.8 ± 11.5 52.3 ± 6.8 27.8 ± 3.4 63 62 23 25.4 ± 2.7
(47–79) (42–66) (24–33) (38–80) (57–70) (19–26) (52–72) (52–108) (21.0–30.4)
E pore from anterior end 165.9 ± 11.1 149.3 ± 9.3 116.3 ± 4.6 198 179 107 108 ± 6.7
(142–177) (135–167) (110–129) (149–229) (165–190) (97–114) (97.8–118.8)
Nerve ring from anterior end 126 ± 4.7 121.1 ± 9.7 94.5 ± 6.7 150 139 89 110.5 ± 4.9
(118–130) (105–135) (83–105) (117–165) (126–146) (83–96) (100–116.8)
Rectum length 63.7 ± 4.8 79
(55–80) (56–96)
Anal body diam. 32.3 ± 1.8 21.7 ± 2.4 16.9 ± 0.9 39 25 15 32 12.3 ± 1
(30–35) (17–26) (15–18) (32–45) (22–28) (14–16) (10.4–13.8)
Tail 55.3 ± 3.3 108.1 ± 9.8 93.7 ± 5.0 65 117 78 82.1 ± 6.2
(52–60) (90–126) (85–100) (56–72) (108–135) (75–80) (72.2–92.2)
Ratio of tail length to rectum 1.7 ± 0.1 1.5
(1.1–1.8) (1.4–2.3)
Spicules length 44.5 ± 3.8 47
(38–49) (32–54) (27–39)
Spicules width 7.1 ± 0.3 10
(7–8) (8–11)
Gubernaculum length 20.0 ± 1.0 28
(18–21) (19–32)
Gubernaculum width 0.9 ± 0.09 0.87
(0.8–1.1) (0.64–1.20)
D%= (E pore from anterior end/Pharynx length) ×100 84.6 ± 3.7 85.1 ± 6.8 87.1 ± 3.5
(78.8–90.5) (76.3–100.0) (82.5–94.4)
E%= (E pore from anterior end/Tail) ×100 300.2 ± 16.8 138.7 ± 10.2 125.5 ± 5.0
(273–323) (124.3–160.0) (118.0–136.3)
SW%= (Spicules length/Anal body diam.) ×100 137.8 ± 8.2
(126.6–150.0)
GS%=(Gubernaculum length/Spicules length)×100 45.1 ± 2.5
(41.6–48.8)
eISSN:
2640-396X
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other