Otwarty dostęp

Prevalence of Dirofilaria immitis in mosquitoes (Diptera) – systematic review and meta-analysis


Zacytuj

Dirofilariasis is a zoonotic vector-borne disease transmitted by at least 27 species of the genus Dirofilaria (Spirurida, Onchocercidae), especially D. repens and D. immitis (canine or dog heartworm). The disease is widely distributed and the reservoirs are mainly mammals from approximately 111 species including canids. Presently, dirofilariasis in humans is considered to be an emerging disease in some regions (Azari-Hamidian et al., 2007, 2009; Simón et al., 2012). At present, at least 77 mosquito species (Diptera: Culicidae) of the genera Culex, Aedes, Anopheles, Mansonia, Coquillettidia, Psorophora, and Culiseta are presumed to have a role in the transmission of dirofilariasis, while the third-stage infective larvae (L3) have been detected from in a few field-captured dipteral species (Azari‐Hamidian et al., 2009). The mosquitoes can become infected by ingestion of blood meal from microfilaremic host. The ingested microfilaria can develop to infected (L1, L2) and subsequently into the infective larvae (L3) in the Malpighian tubules. The L3 migrate to the mosquito proboscis. The L3’s transmit through mosquito bite and become sexually mature in the pulmonary artery and right ventricles of suitable mammalian final host (Ledesma and Harrington, 2011). Heartworm disease is endemic disease, mainly locate in regions with temperate and tropical climate. The transmission of dirofilariasis from endemic to the new area directly depend on availability of microfilaremic hosts, competent vectors as well as a favored ecological factors for development of larval stages to L3 in the mosquitoes (Sassnau et al., 2014). The role of ecological key factors has been proposed for development of dirofilarial larvae in possible vectors for specific locations (Brown et al., 2012). Most of the field studies only reported the prevalence in mosquitoes. So, it is important to perform a comprehensive study to evaluate these key factors. The monitoring of mosquitoes for the infection was based on dissection method which is the gold standard (Latrofa et al., 2012). The experimental studies allow the evaluation of vector competence of suspected mosquitoes for transmission of dirofilariasis (Nayar and Knight, 1999). The results of such experimental studies have been recorded, but no comprehensive evaluation of vector efficiency has been done in all mosquitoes to date. The current systematic review and meta-analysis were conducted on published studies, documenting the prevalence of D. immitis infected (L1-L2)/infective(L3) mosquitoes from field surveys, examine the effect of different key factors on their overall prevalence and comprehensively assess the vector competence from experimental studies.

Material and methods

Research was conducted in accordance with Systematic Reviews and Meta-Analysis (PRISMA) 2015 Guidelines (Moher et al., 2015).

Search strategy and study design

Original search studies that evaluated the mosquito vectors for D. immitis in field and experiment were screened in PubMed, Embase, Web of Sciences, Scopus, and Google Scholar up to October 10, 2019. The keys terms used for searching in literature were ‘Dirofilaria immitis’, ‘vector’, ‘prevalence’, ‘Culicidae’, and ‘mosquitoes’ with the Boolean operators ‘OR’ and/or ‘AND’. The manually searched in the reference lists of the collected studies was also performed. After removal of duplicate articles, the retrieved papers were screened by title and abstract by two independent authors to exclude any that were irrelevant to our study question (S. R. and R. SM). The full text of the remaining articles was evaluated to identify eligible articles. Studies were considered eligible if they had cross-sectional design. Results were screened initially excluding all studies that did not included D. immitis and vectors. The other exclusion criteria were: non original paper (review, systematic reviews, case reports, letter or editorial articles, thesis), unidentified filarial species, undefined data, and lacking control groups for experimental studies. The experimental vector competence studies as well as the field studies were included.

Data extraction

Data were extracted from published articles, evaluating the prevalence of D. immitis infected/infective mosquitoes from field and experimental studies in an Excel form (Microsoft, Redmond, WA, USA). The data extraction was performed by S. R. and R. SM. and in cases of discrepancy, consensus was carried out by discussion with A. S. Subsequently, an author (S. R) extracted the requisite data, and the others (R. SM. and A. S.) rechecked them. Data analysis was performed by R. SM. For field study, the following items were extract: ‘General information’ including first author, year of implementation (The years for collection of samples), and location; geographical data of sampling site including average temperature, annual rainfall, humidity, WHO regional office, altitude, latitude, longitude; ‘vectorial characteristics’ including number of samples, total number of pools, total number of D. immitis infected/infective mosquitoes. In some studies, mosquitoes were evaluated individually for both head+thorax and abdomen in order to differentiate infective and infected specimens, and in others, different parts of mosquitoes were studied in pools. In order to consistency of calculations, in studies in which mosquitoes were studied individually each mosquito was considered as a one pool. So, pool in this study defines as a number of one or more mosquitoes that were placed in a one cluster and considered as a unit of study. The total number of infective and infected pool of mosquitoes was calculated as a number of pools that have an infective and infected larvae stages, respectively. Minimal infected/infective rate, calculated as the ratio of the number of positive pools of infected/infective mosquitoes to the total pool of tested mosquitoes, assumes that there is only one infected/infective individual in each positive pool. Since the nominator and denominator of fraction were the same, it has little effect on the infected/infective rate. For experiment study, the general information and vectorial characteristics were extracted. To quantitatively evaluate vector competence, overall prevalence of D. immitis infection and infective stage in filed and experiment collected mosquitoes was performed.

Quality assessment

Evaluation of the included study quality was conducted by two authors (R. SM and S. R.) independently using the Newcastle-Ottawa Scale (Stang, 2010). Briefly, maximum of nine scores was defined for the following items including the subject selection criteria (0-4 points), comparability of subjects (0-2 points), and exposure (0-3 points). The papers with a total score of 0 to 3, 4 to 6, and 7 to 9 points were specified as the poor, moderate, and high quality, respectively.

Data synthesis and statistical analysis

The STATA software version 13 was used for meta-analysis (Stata Corp LP, College Station, Texas). The main goals were the evaluation of prevalence of D. immitis in field collected vectors and assessment the competence of suspected vector for D. immitis in experimental studies by dissection and molecular methods. The evaluation of field and experimental studies was performed separately. First, random effects model was used for calculation of overall estimates. Metaprop was used for calculating overall prevalence using a Freeman–Tukey double arcsine transformation and then confidence intervals (CI = 95%) for each survey were assessed (Freeman and Tukey, 1950; Harris et al., 2008; Nyaga et al., 2014). Next, the key factors that could be the source of heterogeneity for the prevalence of infection and infective were assessed using meta-regression and subgroup analyses for some factors such as: data collection years, country, mean temperature, annual rainfall, humidity, WHO regional office, altitude, latitude, detection type, vector genus, and vector species. Heterogeneity among studies was evaluated by statistical tests and graphical (i.e., Cochran’s Q test, I 2 statistics, and Galbraith). The range of I 2 was between 0 and 100%. I 2 > 70% were considered heterogeneous (Higgins, 2008; Riahi and Mokhayeri, 2017). In this study the relationship between exposures and outcome was not studied, so evaluation of publication bias was not logical (Mokhayeri et al., 2018). The significance level of ≤0.05 was considered.

Results
Inclusion of studies and data extraction

A flow chart for identification, screening, exclusion, and finally including of retrieved article was shown in Figure 1. A total of 985 literatures was at first screened that of which 680 were removed as duplicated. After that, initial searching using title and abstract (n = 305 articles) was performed. After screening, 210 articles were excluded and full text of remaining papers (n = 95) reviewed for evaluating of eligibility, which of those 53 record removed (Fig. 1). From 42 included articles, 33 and 9 studies were field studies and laboratory experiments, respectively. The selected articles from field study involved 19 countries from Pan American Health Organization (PAHO) (21%), European Region (EURO) (52.6%), Eastern Mediterranean Regional Office (EMRO) (5.2%), and Western Pacific Regional Office (WPRO) (21%). Studies were published over a 29-year period (1990-2019). Molecular assay was used in 9 out of 33 field study and 3 out of 9 experimental studies to identify the D. immitis larvae in vectors (Tables 1, 2).

Characteristics of the individual studies included in the meta-analysis based on eligibility criteria.

Country Year of implementation Method Total sample Total pool Total infected pool Total infective pool Quality score References
Brazil 2013 PCR 3115 311 1 0 7 Ogawa et al. (2013)
Mexico 2015 PCR 2618 595 4 0 6 Oswaldo et al. (2018)
USA 2006 PCR 1,922 390 33 0 7 Chambers et al. (2009)
Mexico 2007 Dissection 272 272 28 21 8 Manrique-Saide et al. (2008)
Italy 2012 PCR 40,892 955 21 0 7 Latrofa et al. (2012)
Iran 2005-2011 PCR 190 190 15 10 6 Azari-Hamidian et al. (2009)
USA 2009 PCR 91,798 1,212 184 54 8 Mckay et al. (2013)
Germany 2011-2013 PCR 16,878 955 2 0 7 Kronefeld et al. (2014)
Italy 2000-2002 PCR 3,198 1,364 10 4 6 Cancrini et al. (2006)
Brazil 1995-1996 Dissection 3,677 3,677 55 8 7 Labarthe et al. (1998)
Portugal 2011-2013 PCR 5,866 1,815 54 23 8 Ferreira et al. (2015)
Argentina 2003-2005 Dissection 2,380 2,380 3 0 7 Vezzani et al. (2006)
Russia 2007-2017 PCR 387 78 5 0 8 Shaikevich et al. (2018)
USA 1994 Dissection 188 188 3 0 6 Comiskey and Wesson (1995)
Italy 2002-2003 PCR 1,576 880 6 3 5 Cancrini et al. (2007)
Italy 2003 PCR 154 154 2 1 6 Cancrini et al. (2003a, 2003b)
Italy 2000-2002 Dissection 2,534 336 81 22 5 Cancrini et al. (2003a, 2003b)
Spain 2005-2007 PCR 1,219 1,219 1 0 7 Morchón et al. (2011)
Argentina 2007-2008 PCR 453 82 2 0 6 Vezzani et al. (2011)
Portugal 2002-2003 PCR 554 554 4 2 7 Santa-Ana et al. (2006)
Turkey 2008-2009 PCR 6,153 559 15 14 8 Yildirim et al. (2011)
Spain 2012-2013 PCR 881 881 1 1 6 Bravo-Barriga et al. (2016)
Turkey 2008 PCR 301 54 2 1 8 Bıs¸kın et al. (2010)
Slovakia 2013 PCR 10,500 105 4 0 8 Bocková et al. (2015)
Spain 2004-2006 PCR 725 725 2 0 7 Morchon et al. (2007)
USA 1985-1987 Dissection 9,377 9,377 123 18 7 Parker (1993)
South-Korea 2005 PCR 2,059 172 12 0 6 Lee et al. (2007)
USA 2006-2007 PCR 1,401 206 15 0 8 Licitra et al. (2010)
France 2015 Real time PCR 797 797 29 0 8 Tahir et al. (2017)
Italy 2005 PCR 637 119 1 0 7 Masetti et al. (2008)
Taiwan 1997 Dissection 4,537 4,537 146 0 6 Lai et al. (2001)
Samoa 1978-1980 Dissection 41,980 41,980 179 49 7 Samarawickrema et al. (1992)
French Polynesia 2003-2004 Dissection 1,194 1,194 28 4 8 Russell et al. (2005)

List of published articles included in the systematic review for experiment studies of D. immitis in vectors.

Country Year of implementation Detection method Total sample Total pool Total infected pool Total infective pool Quality score References
Brazil 2000 Dissection 756 756 225 57 8 Ahid et al. (2000)
Italy 2017 PCR 136 136 66 10 7 Silaghi et al. (2017)
Italy 2015 PCR 45 45 37 18 8 Montarsi et al. (2015)
Iran 2017 PCR 90 90 58 16 7 Solgi et al. (2017)
Brazil 2008 Dissection 1,942 1,942 465 0 8 Carvalho et al. (2008)
USA 2005 Dissection 750 750 630 0 8 Debboun et al. (2005)
Brazil 1998 Dissection 73 73 43 0 7 Macêdo et al. (1998)
Australia 1989 Dissection 215 215 0 49 6 Russell et al. (2005)
Brazil 1999 Dissection 505 505 0 101 8 Brito et al. (1999)

Figure 1:

Flow chart detailing the number of studies excluded and included at each step for systematic review of the prevalence of D. immitis infection in Culicidae mosquitoes.

Meta-analysis for estimating overall prevalence of Dirofilaria immitis infected/infective stages in the filed collected mosquitoes

Meta-analysis was performed for estimating overall prevalence of D. immitis infected/infective stages in the genera and species of field collected mosquitoes (Table 3). The magnitude of the overall prevalence differed largely across all mosquito genera and species. When reporting overall prevalence of D. immitis infected stages in vectors, it ranged between 6.7 per 1000 (95% CI: 3.48-10.88 per 1000) in Cx. pipiens complex and 49.5 per 1,000 (95% CI: 14.7-101.6 per 1000) in Ae. albopictus. The overall prevalence of D. immitis infected stages across all mosquito species was 21.8 per 1000 (95% CI: 14.06-31.18 per 1,000) and heterogeneity was substantial (I 2 = 98.5%). Subgroup analysis for infective rate in vector produced overall prevalence ranging from 0 per 1,000 in Ochlerotatus sollicitans to 19.2 per 1,000 in Cx. theileri (95% CI: 0.06-62.5 per 1,000). The overall prevalence of D. immitis infective stages across all mosquito species was 2.6 per 1,000 (95% CI: 0.97-4.77 per 1,000) and heterogeneity was substantial (I 2 = 94.4%).

Subgroup meta-analysis of studies reporting Dirofilaria immitis infected and infective rates in vectors grouped by mosquito genus and species.

Minimum infected ratea Minimum infective rateb
Variable pool size Positive pool Overall prevalence (95% CI) I 2c Q Positive pool Overall prevalence (95% CI) I 2 Q
Total 124,480 1,071 21.86 (14.06-31.1) 98.5 2,475.9 235 2.6 (0.97-4.77) 94.4 622.1
Aedes 62,924 526 29.5 (17.21-46.4) 97.5 1,016.7 138 1.8 (0.03-5.3) 91.6 298.4
Culex 16,652 260 12.36 (5.8-20.88) 92.9 241.8 42 1.28 (0.0-4.04) 83.3 95.6
Anopheles 4,244 157 51.37 (5-133.5) 98.1 372.9 19 3.14 (0.0-12.2) 75.5 28.6
Ochlerotatus 5,382 73 43.29 (0.1-140.6) 96.3 54.9 24 0.97 (0.14-2.27) 0.0
Cx. quinciafasiatus 4,892 168 24.7 (7.79-49.4) 92 62.7 13 2.6 (0.0-12.46) 87.6 40.2
Ae. polynesiensis 24,041 198 31.8 (3.5-85.5) 98 100.8 53 1.8 (0.5-3.86) 32.7 2.9
Oc. taeniorhynchus 2,517 44 12.6 (8.42-17.5) 0.0 32 4.1 (1.73-7.31) 0.0
Oc. sollicitans 2,539 25 0 2 0
Cx. pipiens 5,518 43 6.7 (3.48-10.88) 59.7 19.8 7 0.62 (0-2.29) 48.3 15.5
Ae. ochcaspius 285 14 48.6 (25.81-77.6) 0.0 4 10.7 (0.91-27.7) 0.0
Ae. vexans 13,439 77 47.1 (1.08-135) 97.6 299.3 30 6.2 (0.0-38.53) 94.0 117.2
Cx. theileri 1,574 43 35.3 (2.06-101.4) 96.2 78.5 25 19.2 (0.06-62.5) 94.5 54.3
Ae. albopictus 2,298 151 49.5 (14.7-101.6) 95.3 169.7 25 3.2 (0.00-15.30) 86.3 58.6

Notes: a,bThe result present as a case per 1,000; cheterogenicity index.

Meta-analysis for evaluating risk factor on overall prevalence of Dirofilaria immitis infected/infective stages in vectors

Different factors were analyzed on overall prevalence of D. immitis infected/infective stages in vectors (Tables 4, 5). The overall prevalence of dirofilariasis decreased with implementation years from 2000 to 2019. Dirofilariasis prevalence differs between countries. The overall prevalence of D. immitis infective stages in vectors ranged from 1.4 per 1,000 (95% CI: 0.3-3 per 1,000) in Brazil to 52.6 per 1,000 (95% CI: 25.5-94.7 per 1,000) in Iran. The greatest overall prevalence of infective rate was reported across studies conducted in the Eastern Mediterranean Region, longitude 80 to 110 (12.5 per 1,000, 95% CI: 0.0-49 per 1,000), latitude 20 to 40 (5.7 per 1,000, 95% CI: 1.3-12.2 per 1,000), annual rainfall 250 to 500 millimeter (5.1 per 1,000, 95% CI: 1.4-10.2 per 1,000), sea level 26 to 100 (11.2 per 1,000, 95% CI: 0.3-34.6 per 1,000) and <1,000 meter (10 per 1,000, 95% CI: 0.0-35.1 per 1,000), humidity 66-70% (7.4 per 1,000, 95% CI: 1.2-18 per 1,000) during 2000 to 2005 (9.6 per 1,000, 95% CI: 0.0-36.4 per 1,000) by dissection methods (4.5 per 1,000, 95% CI: 1.6-8.6 per 1,000). The mean temperatures of collection sites vary from 7 to 28°C. The higher infective rate was report between 15 and 21°C.

Subgroup meta-analysis of field studies reporting pool prevalence Dirofilaria immitis infected/infective rates in vectors grouped by country.

Minimum infected ratea Minimum infective rateb
Variable Pool size Positive pool Overall prevalence (95% CI) I 2c Positive pool Overall prevalence (95% CI) I 2
Global 124,480 1,071 21.9 (14-31.2) 98.6 235 2.6 (1-4.8) 94.4
PAHO 18,690 451 32.4 (13.3-59) 98.2 101 3.8 (0.1-11.1) 95.3
Argentina 2,462 5 0 (0-1.4) 99.9 0 0 (0-0.3) 99.8
Brazil 3,988 56 13.2 (9.8-17.1) 99.9 8 1.4 (0.3-3) 99.8
Mexico 867 32 25 (15.4-36.8) 99.9 21 9.4 (3.7-17.3) 99.8
USA 11,373 358 57.9 (8.1-146.5) 99 72 4 (0-23.4) 96.8
EURO 57,717 240 14.8 (5-28.7) 97.2 71 2.2 (0.1-6.2) 92.9
Italy 3,808 121 30.3 (3.1-80.6) 97.7 30 6.3 (0-20.8) 91.9
Portugal 2,389 58 23.1 (17.4-29.6) 99.5 25 10 (6.3-14.5) 98.4
Slovakia 187 4 14.7 (0.9-39.4) 99.5 0 0 (0-10.2) 98.4
Spain 2,825 4 1.3 (0.2-3.2) 0 1 0.1 (0-1.3) 0
Turkey 613 17 24.5 (12.7-39.3) 5.1 15 21.4 (10.4-35.5) 34.2
Czech 237 0 0 (0-15.4) 0 0 0 (0-15.4) 0
France 797 29 36.4 (24.5-51.8) 0 0 (0-4.6)
Germany 955 2 2.1 (0.3-7.5) 0 0 (0-3.9)
Russia 78 5 64.1 (21.2-143) 0 0 (0-46.2)
Australia 2,389 0 0 (0-0.1) 0 0 (0-0.1)
EMRO 190 15 78.9 (44.9-126.9) 10 52.6 (25.5-94.7)
Iran 190 15 78.9 (44.9-126.9) 10 52.6 (25.5-94.7)
WPRO 47,883 365 25.6 (6.1-57.4) 98.9 53 0.3 (0-2.0) 81.2
French Polynesia 1,194 28 23.5 (15.6-33.7) 4 3.4 (0.9-8.6)
Samoa 41,980 179 4.3 (3.7-4.9) 49 1.2 (0.9-1.5)
Taiwan 4,537 146 32.2 (27.2-37.7) 0 0 (0.0-0.8)
South-Korea 172 12 69.8 (36.6-118.7) 0 0 (0.0-21.2)

Notes: a,bThe result presents as a case per 1,000; cheterogenicity index.

Subgroup meta-analysis of field studies reporting pool prevalence D. immitis infected and infective rates in vectors grouped by risk factor.

Minimum infected ratea Minimum infective rateb
Variable Pool size Positive pool Overall prevalence (95% CI) I 2c Positive pool Overall prevalence (95% CI) I 2
Latitude
0-20 44,470 245 16.9 (3.2-40.1) 96.6 53 0.5 (0.2-0.9) 1.8
20-40 25,560 609 29 (15.1-46.9) 97.7 129 5.7 (1.3-12.2) 95.1
>40 54,450 217 17.4 (4.5-37) 98.3 53 1.70 (0-6.1) 93.1
Longitude
0-10 4,218 86 13.1 (1.3-36) 95.7 24 1.9 (0-9.5) 90.9
10-20 52,621 128 12 (1.8-29.6) 98.1 32 2.1 (0-6.7) 93.3
20-50 4,745 96 29.9 (12.9-52.6) 81.9 33 8.4 (0-26-9) 87.8
50-80 12,150 129 6.1 (0-18.8) 93.7 18 0 (0-1.4) 66.9
80-110 2,473 234 58.1 (9.1-143) 97.7 75 12.5 (0-49) 96
>110 48,273 398 34.8 (11.5-69.4) 98.8 53 0.3 (0-1.7) 75.1
Mean temperature °C
7-14.9 52,431 190 23.3 (7.3-46.9) 98 47 2.5 (0-8.1) 92.3
15-21.9 18,905 404 19.6 (6-39.9) 98.1 106 4.1 (0.4-10.4) 94.2
22-28.1 53,144 477 23.9 (10.8-41.5) 98.1 82 1.9 (0.1-5.1) 90.9
Annual rainfall (mm)
<250 49,029 5 0.4 (0-3) 79.5 1 0 (0-0.1) 37.3
251-500 24,280 509 27.8 (16.6-41.5) 96 100 5.1 (1.4-10.2) 92
501-1,000 8,801 345 32 (9.8-65.7) 97.9 85 3.4 (0-12.7) 94.9
>1,000 42,370 212 3.9 (3.3-4.6) 99.7 49 0.6 (0.3-0.9) 99.3
Sea level (m)
<25 15,367 281 28.7 (12.4-50.9) 96.4 52 3.4 (0.2-9.1) 87.8
26-100 6,945 291 36.1 (4.7-93.7) 98.9 98 11.2 (0.3-34.6) 97.6
101-200 95,282 379 13.3 (4.1-26.8) 99.2 57.9 0 (0-1.1) 93.7
201-1000 4,067 58 12.3 (1.4-31.7) 94 3 0.1 (0-1) 0
>1,000 2,819 62 27.8 (4.4-67.3) 95.1 25 10 (0-35.1) 93.8
Mean humidity (%)
<65 5,171 73 12.3 (1.5-29.6) 89.5 24 5.8 (0-19.6) 89.6
66-70 15,821 413 26.9 (6.1-61.1) 98.8 104 7.4 (1.2-18) 95.9
71-75 51,514 132 24.4 (8.2-48.1) 97.6 31 1.8 (0-7.1) 91
76-80 8,579 235 22.2 (9.9-38.8) 93.1 27 1.2 (0-8.5) 93.7
>80 43,395 218 14.1 (0.9-39.4) 95.3 0.49 0.1 (0-0.3) 0
Detection method
PCR 60,539 425 19.3 (7.9-34.9) 98.3 113 2 (0-5.7) 93.7
Dissection 63,941 646 30.5 (1.5-48.5) 98.8 122 4.5 (1.6-8.6) 95.2
Implementation year
1992-2000 55,222 360 10.5 (4-19.7) 97.3 75 0.9 (0.4-1.6) 40.7
2000-2005 6,221 257 57.3 (14.5-124.7) 98 27 9.6 (0-36.4) 96.6
2006-2010 8,525 132 24.4 (10.1-43.9) 95.3 41 3.7 (0.1-10.3) 89.6
2011-2015 6,313 283 19.9 (2.6-50.2) 94.4 91 3.8 (0-14.6) 93.5
2016-2018 48,199 39 10.3 (0–35.1) 97.4 1 0 (0-0.1) 45.4

Notes: a,bThe result presents as a case per 1,000; cheterogenicity index.

Meta-analysis of experimental studies for overall prevalence of Dirofilaria immitis infected/infective stages in mosquitoes

The total sample size of experimental studies was 4,512. The overall prevalence of D. immitis infected and infective stages in mosquitoes were 397 per 1,000 (95% CI: 154.5-636.5 per 1,000) and 84.7 per 1,000 (95% CI: 20.5-183.8 per 1,000), respectively. The PCR technique was more sensitive than morphological tests. Anopheles spp were accused as a more competent vector than other mosquitoes for transmission of D. immitis (Table 6).

Subgroup meta-analysis of experimental studies reporting Dirofilaria immitis infected and infective rates in vectors grouped by mosquito genus and species.

Minimum infected ratea Minimum infective rateb
Variable Pool size Positive pool Overall prevalence (95% CI) I 2 Positive pool Overall prevalence (95% CI) I 2
Overall 4,512 1,524 379.9 (154.5-636.5) 89.2 251 84.7 (20.5-183.8) 98.8
Method PCR 271 161 649.2 (459.5-817.8) 99.7 44 194.6 (55-388.8) 99.4
Method Dissection 4,241 1,363 253.7 (40.4-565.7) 99.6 207 46.9 (0.9-147) 99.1
Ae. spp. 1,506 905 482.2 (105.2-871.6) 99.6 168 132.4 (17.3-324.2) 98.5
Cx. spp. 2,893 561 61.2 (0.5-197) 98.8 65 55.9 (2.7-163.1) 98.2
An. spp. 90 58 644.4 (536.5-742.6) 16 177.8 (105.2-274.6)
Oc. spp. 0 0 0 0 0

Notes: a,bThe result presents as a case per 1,000.

Discussion
Summary of evidence

This is the first study that aimed to summarizing information from field and experiments studies related to overall prevalence of D. immitis infected/infective mosquitoes using a meta-analysis. The potency of mosquito species to become infected and then transmit D. immitis is an important step that led to the accurate measurement the role of vectors in transmission (Morchón et al., 2012). Based on our result, the prevalence of infective stages of D. immitis in field mosquitoes was different according to genus and species. The most infective rate belongs to Anopheles spp., Aedes spp., and Culex spp. with the overall prevalence of 3.1 per 1,000 (95% CI: 0-12.2 per 1,000), 1.8 per 1,000 (95% CI: 0.03-5.3 per 1,000), and 1.2 per 1,000 (95% CI: 0-4.4 per 1,000), respectively. Due to the higher species diversity of Anopheles compare to other studied genera and the high infective rate among species of this genus, it was expected to have the highest rate of infectivity for Anopheles spp. Interestingly, the overall prevalence of the D. immitis infective mosquitoes in experimental studies was the same of field cached mosquitoes in accordance to the genus. D. immitis is sub-periodic, with peak density of microfilaria in a host’s peripheral circulation during the evening, presumably synchronizing with circadian cycles of their potential vectors. So, Culex theileri with feeding behavior of nocturnal is also among the species with the highest overall prevalence of D. immitis infected and infective stages. (Ledesma and Harrington, 2011). The prevalence rate of mosquitoes in field studies were varied in different geographical property, including latitude, longitude, mean temperature, annual rainfall, sea level, and humidity. The factor ‘country’ should be explicate with the many factors such as different national vector control measures and ecological context (Genchi et al., 2009). Diverse ecological and geographical characteristics can also contribute toward biological variation. Climate change together with a shifting weather patterns facilitate the development of mosquitoes vectors of D. immitis and faster larvae development on them (Morchón et al., 2012). Today, it was completely determined that climate pattern can affect vector-borne disease transmission. In this meta-analysis study, it was shown that the high infected and infective rate was registered at the temperature optima of 15 to 21°C that it may be due to a suitable temperature for the development of the infectious stages of D. immitis in the mosquito. In this regard, Iran with average temperature of 17.5 had a highest registered D. immitis infective rate among the world. The extrinsic development is possible above 14°C and it takes e.g. 10 to 12 days at 24 to 26°C (Silaghi et al., 2017). One of the main reasons for decrease of infection rate at higher temperatures despite the appropriateness of the extrinsic period may be due to the high mortality rate of insects (Bayoh and Lindsay, 2004). The other important factors that could influence vector behavior and survival is relative humidity (Brown et al., 2012). Based on the current meta-analysis study, the mean humidity for highest infective rate was 66 to 70%. In this regard, the highest infective rate was belonged to the studies in Iran and Turkey with relative humidity of 72 and 62% at sampling sites. The standard laboratory conditions for transformation of microfilaria to infective larvae on mosquitoes are at a temperature of 25°C and relative humidity of 85% (Silaghi et al., 2017), while it was 15 to 21°C and relative humidity of 66 to 70% for field condition. In the experimental studies, the optimum condition for infection of mosquitoes is provided, so as expected, the overall prevalence of D. immitis infection of mosquitoes in the experimental studies is higher than the field studies.

Strength

To our knowledge, our work is the only study to evaluate an overall prevalence of D. immitis in vectors. The other strength of this study were comprehensive literature searches, rigorous methodology, studies from different part of the world, defined clear inclusion and exclusion criteria.

Limitation

This study has some limitations that are based on the nature of the published studies such as different diagnostic test in included studies. Further, some studies published in local journals may be missed.

Conclusion

Based on finding of this study, among different genera of mosquitoes, the genus of Anopheles were introduced as a potential vectors of Heartworm disease with the highest infective rate. It must be considered that in addition to the infection rate other factor such as host preference; vector feeding behavior; mortality rates of infected vector; vector and host abundance and microfilaremic reservoir and susceptible host encounter rate are important for affecting transmission of mosquito species (Ledesma and Harrington, 2011). This study showed that the WHO region Number, humidity, longitude, latitude, annual rainfall, sea level, the year of implementation and identification methods may affect the overall prevalence of infected and infective rate.

eISSN:
2640-396X
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other