Wymagane uwierzytelnienie

Raph blood group system

   | 29 paź 2019

Zacytuj

Daniels GL, Tippett P, Palmer DK, Miller YE, Geyer D, Jones C; MRC Blood Group Unit. DEN, a new human red cell polymorphism defined by monoclonal antibodies and controlled by a locus on chromosome 11. (Abstract) Transfusion 1985;25:482.Search in Google Scholar

Daniels GL, Tippett P, Palmer DK, Miller YE, Geyer D, Jones C. MER2: a red cell polymorphism defined by monoclonal antibodies. Vox Sang 1987;52:107–10.10.1111/j.1423-0410.1987.tb03002.x3604155Search in Google Scholar

Daniels GL, Levene C, Berrebi A, et al. Human alloantibodies detecting a red cell antigen apparently identical to MER2. Vox Sang 1988;55:161–4.10.1111/j.1423-0410.1988.tb05085.x3238950Search in Google Scholar

Karamatic Crew V, Burton N, Kagan A, et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 2004;104:2217–23.10.1182/blood-2004-04-151215265795Search in Google Scholar

Karamatic Crew V, Poole J, Long S, et al. Two MER2-negative individuals with the same novel CD151 mutation and evidence for clinical significance of anti-MER2. Transfusion 2008;48:1912–16.10.1111/j.1537-2995.2008.01792.x18522704Search in Google Scholar

Karamatic Crew V, Poole J, Bullock T, Burton N, Muniz-Diaz E, Daniels G. A new case and a novel molecular background in a MER2-negative (RAPH:−1) individual with anti-MER2 (abstract). Vox Sang 2012;103(Suppl 1):210–11.Search in Google Scholar

Issitt PD, Anstee DJ. Applied blood group serology. 4th ed. Durham, NC: Montgomery Scientific Publications, 1998.Search in Google Scholar

Huang S, Yuan S, Dong M, et al. The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 2005; 86:674–84.10.1016/j.ygeno.2005.08.00416242907Search in Google Scholar

Sincock PM, Mayrhofer G, Ashman LK. Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and α5β1 integrin. J Histochem Cytochem 1997; 45:515–25.10.1177/0022155497045004049111230Search in Google Scholar

Orlowski E, Chand R, Yip J, et al. A platelet tetraspanin superfamily member, CD151, is required for regulation of thrombus growth and stability in vivo. J Thromb Haemost 2009;7:2074–84.10.1111/j.1538-7836.2009.03612.x19740096Search in Google Scholar

Rojewski MT, Schrezenmeier H, Flegel WA. Tissue distribution of blood group membrane proteins beyond red cells: evidence from cDNA libraries. Transfus Apher Sci 2006;35:71–82.10.1016/j.transci.2006.05.00816956794Search in Google Scholar

Sterk LMT, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A. The tetraspanin molecular CD151, a novel constituent of hemidesmosomes, associates with the integrin α6β4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 2000;149:969–82.10.1083/jcb.149.4.969217456610811835Search in Google Scholar

Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK. PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 1999;112: 833–44.10.1242/jcs.112.6.83310036233Search in Google Scholar

Yañez-Mó N, Barreiro O, Gonzalo P, et al. MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 2008;112:3217–26.10.1182/blood-2008-02-13939418663148Search in Google Scholar

Zhang F, Michaelson JE, Moshiach S, et al. Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. Blood 2011;118:4274–84.10.1182/blood-2011-03-339531320474221832275Search in Google Scholar

Johnson JL, Winterwood N, DeMali KA, Stipp CS. Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 2009;122:2263–73.10.1242/jcs.04599719509057Search in Google Scholar

Yamada M, Sumida Y, Fujibayashi A, et al. The tetraspanin CD151 regulates cell morphology and intracellular signaling on laminin-511. FEBS J 2008;275:3335–51.10.1111/j.1742-4658.2008.06481.x18492066Search in Google Scholar

Sharma C, Yang XH, Helmer ME. DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 2008;19:3415–25.10.1091/mbc.e07-11-1164248831518508921Search in Google Scholar

Daniels GL, Fletcher A, Garratty G, et al; International Society of Blood Transfusion. Blood group terminology 2004: from the International Society of Blood Transfusion committee on terminology for red cell surface antigens. Vox Sang 2004;87:304–16.10.1111/j.1423-0410.2004.00564.x15585029Search in Google Scholar

Lögdberg L, Reid ME, Lamont RE, Zelinski T. Human blood group genes 2004: chromosomal locations and cloning strategies. Transfus Med Rev 2005;19:45–57.10.1016/j.tmrv.2004.09.00715830327Search in Google Scholar

Whittock NV, McLean WHI. Genomic organization, amplification, fine mapping, and intragenic polymorphisms of the human hemidesmosomal tetraspanin CD151 gene. Biochem Biophys Res Comm 2001;281:425–30.10.1006/bbrc.2001.438411181065Search in Google Scholar

International Society of Blood Transfusion. Blood Group Allele Terminology. Available at: http://www.isbtweb.org/ working-parties/red-cell-immunogenetics-and-blood-group-terminology/blood-group-terminology/blood-group-allele-terminology/. Accessed January 21, 2014.Search in Google Scholar

Daniels G. Human blood groups. 3rd ed. Oxford: Wiley-Blackwell, 2013.10.1002/9781118493595Search in Google Scholar

Roback JD, Combs MR, Grossman BJ, Hillyer CD. Technical manual. 16th ed. Bethesda, MD: AABB, 2008:432.Search in Google Scholar

Kagan A, Feld S, Chemke J, Bar-Khayim Y. Occurrence of hereditary nephritis, pretibial epidermolysis bullosa and beta-thalassemia minor in two siblings with end-stage renal disease. Nephron 1988;49:331–2.10.1159/0001850863412548Search in Google Scholar

Lau L, Wee JL, Wright MD, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin αIIbβ3 signaling and platelet function. Blood 2004;104:2368–75.10.1182/blood-2003-12-443015226180Search in Google Scholar

Wright MD, Geary SM, Fitter S, et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 2004;24:5978–88.10.1128/MCB.24.13.5978-5988.200448091415199151Search in Google Scholar

Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG. CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? [Erratum in Cancer Epidemiol Biomarkers Prev 2005;14:553]. Cancer Epidemiol Biomarkers Prev 2004;13:1717–21.10.1158/1055-9965.1717.13.11Search in Google Scholar

Hashida H, Takabayashi A, Tokuhara T, et al. Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer 2003;89:158–67.10.1038/sj.bjc.6601015239420212838318Search in Google Scholar

Ke AW, Shi GM, Zhou J, et al. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology 2009;49:491–503.10.1002/hep.2263919065669Search in Google Scholar

Tokuhara T, Hasegawa H, Hattori N, et al. Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res 2001;7:4109–14.Search in Google Scholar

Sadej R, Romanska H, Baldwin G, et al. CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 2009;7:787–98.10.1158/1541-7786.MCR-08-057419531562Search in Google Scholar

Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood 2008;112:2081–8.10.1182/blood-2008-03-14567218487511Search in Google Scholar

Wang J, Liu X, Ni P, Gu Z, Fan Q. SP1 is required for basal activation and chromatin accessibility of CD151 promoter in liver cancer cells. Biochem Biophys Res Commun 2010;393:291–6.10.1016/j.bbrc.2010.01.12720149781Search in Google Scholar

Baleato RM, Guthrie PL, Gubler M, Ashman LK, Roselli S. Deletion of Cd151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am J Pathol 2008;173:927–37.10.2353/ajpath.2008.071149254306218787104Search in Google Scholar

Cowin AJ, Adams D, Geary SM, Wright MD, Jones JC, Ashman LK. Wound healing is defective in mice lacking tetraspanin CD151. J Invest Dermatol 2006;126:680–9.10.1038/sj.jid.5700142297603916410781Search in Google Scholar

Chaudhuri A, Polyakova J, Zbrzezna V, Pogo AO. The coding sequence of Duffy blood group gene in humans and simians: restriction fragment length polymorphism, antibody and malarial parasite specificities, and expression in nonerythroid tissues in Duffy-negative individuals. Blood 1995;85:615–21.10.1182/blood.V85.3.615.bloodjournal853615Search in Google Scholar

eISSN:
1930-3955
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Laboratory Medicine