Otwarty dostęp

Orientation Of A Triaxial Accelerometer Using A Homogeneous Transformation Matrix And Kalman Filters


Zacytuj

K.-S. Kim, T.-H. Yoon, J.-W. Lee, D.-J. Kim, Interactive toothbrushing education by a smart toothbrush system via 3D visualization., Comput. Methods Programs Biomed. 96 (2009) 125–132. doi:10.1016/j.cmpb.2009.04.006.10.1016/j.cmpb.2009.04.00619439390 Search in Google Scholar

K. Morioka, F. Hashikawa, T. Takigawa, Human Identification Based on Walking Detection with Acceleration Sensor and Networked Laser Range Sensors in Intelligent Space, Int. J. Smart Sens. Intell. Syst. 6 (2013) 2040–2054. Search in Google Scholar

M.J. Mathie, B.G. Celler, N.H. Lovell, A.C.F. Coster, Classification of basic daily movements using a triaxial accelerometer, Med. Biol. Eng. Comput. (2004) 679–687.10.1007/BF0234755115503970 Search in Google Scholar

B. Kikhia, M. Gomez, L.L. Jiménez, J. Hallberg, N. Karvonen, K. Synnes, Analyzing body movements within the Laban Effort Framework using a single accelerometer., Sensors. 14 (2014) 5725–41. doi:10.3390/s140305725.10.3390/s140305725400401724662408 Search in Google Scholar

C.C. Yang, Y.L. Hsu, A review of accelerometry-based wearable motion detectors for physical activity monitoring., Sensors. 10 (2010) 7772–88. doi:10.3390/s100807772.10.3390/s100807772323118722163626 Search in Google Scholar

T. Paul, J. Singh, M.M. Nayak, K. Rajanna, M.S. Kumar, Design and optimization of bulk micromachinaded accelerometer for space applications, Int. J. Smart Sens. Intell. Syst. 1 (2008) 1019–1030. Search in Google Scholar

M.D. Djurić-Jovičić, N.S. Jovičić, D.B. Popović, Kinematics of gait: new method for angle estimation based on accelerometers., Sensors. 11 (2011) 10571–85. doi:10.3390/s111110571.10.3390/s111110571327430122346659 Search in Google Scholar

W. Hernández, Improving the Responses of Several Accelerometers Used in a Car Under Performance Tests by Using Kalman Filtering, Sensors. 1 (2001) 38–52.10.3390/s10100038 Search in Google Scholar

W. Hernández, Improving the Response of a Rollover Sensor Placed in a Car under Performance Tests by Using a RLS Lattice Algorithm, Sensors. 5 (2005) 613–632. doi:10.3390/s5120613.10.3390/s5120613 Search in Google Scholar

L. Gasbarro, A. Beghi, R. Frezza, F. Nori, C. Spagnol, Motorcycle trajectory reconstruction by integration of vision and MEMS accelerometers, in: 43rd IEEE Conf. Decis. Control, IEEE, Atlantis, Paradise Island, 2004: pp. 779–783. doi:10.1109/CDC.2004.1428759.10.1109/CDC.2004.1428759 Search in Google Scholar

D. Giansanti, G. Maccioni, V. Macellari, The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers., IEEE Trans. Biomed. Eng. 52 (2005) 1271–7. doi:10.1109/TBME.2005.847404.10.1109/TBME.2005.84740416041990 Search in Google Scholar

H.H.S. Liu, G.K.H. Pang, Accelerometer for mobile robot positioning, IEEE Trans. Ind. Appl. 37 (2001) 812–819. doi:10.1109/28.924763.10.1109/28.924763 Search in Google Scholar

J. Hwang, H. Yun, S.-K. Park, D. Lee, S. Hong, Optimal methods of RTK-GPS/accelerometer integration to monitor the displacement of structures., Sensors. 12 (2012) 1014–34. doi:10.3390/s120101014.10.3390/s120101014327925222368508 Search in Google Scholar

R. Raya, E. Rocon, J. a Gallego, R. Ceres, J.L. Pons, A robust kalman algorithm to facilitate human-computer interaction for people with cerebral palsy, using a new interface based on inertial sensors., Sensors. 12 (2012) 3049–3066. doi:10.3390/s120303049.10.3390/s120303049337656522736992 Search in Google Scholar

W.T. Ang, S.Y. Khoo, P.K. Khosla, C.N. Riviere, Physical model of a MEMS accelerometer for low-g motion tracking applications, in: IEEE Int. Conf. Robot. Autom. 2004. Proceedings. ICRA ‘04. 2004, IEEE, New Orleans. LA, 2004: pp. 1345–1351. doi:10.1109/ROBOT.2004.1308011.10.1109/ROBOT.2004.1308011 Search in Google Scholar

M. Meng, Z. Wu, Y. Yu, Y. Ge, Y. Ge, Design and Characterization of a Six-axis Accelerometer*, in: Proc. 2005 IEEE Int. Conf. Robot. Autom., IEEE, Barcelona, Spain, 2005: pp. 2356–2361. Search in Google Scholar

J. Yang, W. Chang, W.C. Bang, E.S. Choi, Analysis and compensation of errors in the input device based on inertial sensors, Proc. Int. Conf. Inf. Technol. Coding Comput. 2 (2004) 790–796. doi:10.1109/ITCC.2004.1286755.10.1109/ITCC.2004.1286755 Search in Google Scholar

M. ŠIPOŠ, J. ROHÁÄŒ, P. NOVÁÄŒEK, Analyses of Electronic Inclinometer Data for Tri-axial Accelerometer’s Initial Alignment, Pe.org.pl. (2012) 286–290. Search in Google Scholar

M. Sotak, Testing the Coarse Alignment Algorithm Using Rotation Platform, Acta Polytech. Hungarica. 7 (2010). Search in Google Scholar

R.E. Kalman, R.S. Bucy, New Results in Linear Filtering and Prediction Theory, Trans. ASME–Journal Basic Eng. 83 (1961) 95–108. doi:10.1115/1.3658902.10.1115/1.3658902 Search in Google Scholar

R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME– Journal Basic Eng. 82 (1960) 35–45.10.1115/1.3662552 Search in Google Scholar

G. Pappas, M. Zohdy, Extended Kalman Filtering and Pathloss modeling for Shadow Power Parameter Estimation in Mobile Wireless Communications, Int. J. Smart Sens. Intell. Syst. 7 (2014) 898–924. Search in Google Scholar

eISSN:
1178-5608
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other