Otwarty dostęp

Research on Capsule Network Based on Attention Mechanism

,  oraz   
21 lut 2022

Zacytuj
Pobierz okładkę

Figure 1.

The original capsule network
The original capsule network

Figure 2.

CBAM Module
CBAM Module

Figure 3.

Channel Attention Module
Channel Attention Module

Figure 4.

Spatial Atttion Module
Spatial Atttion Module

Figure 5.

Capsule network based on attention mechanism
Capsule network based on attention mechanism

j_ijanmc-2021-011_utab_001

Procedure Routing algorithm
1: procedure ROUTING ( u ^ i j , i , l )
2:     for all capsule i in layer l and capsule j in layer (l + 1):bij ←0
3:     for r iterations do
4:         for all capsule i in layer l : ci ← softmax (bi )
5:         for all capsule j in layer (l +1) : sj i C i j u ^ i | j
6:         for all capsule j in layer (l +1) : vj ← squash (sj )
7:         for all capsule i in layer l and capsule j in layer (l + l)
8: return vj

NETWORK MODEL AND PARAMETERS

Layer Parameters
Conv inputChannel:1; outPutChannel:256 kernel size= 9; stride=1
CBAM Channel:256
PrimaryCaps InputChannel:256;OutputCaps:32*6*6output_dim:8;kernel_size:9,stride:2
MgitCaps Inputeaps:32*6*6;out_put_caps:10

NETWORK MODEL ACCURACY

Net Work Name Routing Number CBAM Module Max Accuracy First time
CapsNetl 1 False 99.70999908% 133
CapsNetl_CBAM 1 True 99.66999817% 100
CapsNet2 2 False 99.65000153% 111
CapsNet2_CBAM 2 True 99.61000061% 42
CapsNet3 3 False 99.69000244% 131
CapsNet3_CBAM 3 True 99.62002324% 82
CapsNet4 4 False 99.59999847% 141
CapsNet4_CBAM 4 True 99.55999756% 86
CapsNet5 5 False 99.65000153% 125
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Informatyka, Informatyka, inne