Otwarty dostęp

Contemporary hybrid acrylic materials and modern thermoplastics in the manufacture of dental prostheses


Zacytuj

Alla RK, Sajjan S, Alluri VR, Ginjupalli K, Upadhya N. Influence of fiber reinforcement on the properties of denture base resins. J Biomater Nanobiotechnol 2013;4(1):91-7. doi: 10.4236/jbnb.2013.41012. Search in Google Scholar

Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 2017;12:3801-12. Search in Google Scholar

Braden M, Davy KW, Parker S, Ladizesky NH, Ward IM. Denture base poly(methyl methacrylate) reinforced with ultra-thin modulus polyethylene fibers. Br Dent J 1988;164(4):109-13. Search in Google Scholar

Nakamura M, Takahashi H, Hayakawa I. Reinforcement of denture base resin with short-rod glass fiber. Dent Mater J 2007;26(5):733-8. Search in Google Scholar

Marei MK, El-Sabrooty A, Ragab AY, El-Osairy MA. A study of some physical and mechanical properties of metal-filled acrylic resin. Saudi Dent J 1994;6:69-77. Search in Google Scholar

Wang R, Kayacan R, Küçükeşmen C. Nanotubes/polymethyl methacrylate composite resins as denture base materials. In: Zhang M, Naik RR, Dai L, editors. Carbon nanomaterials for biomedical applications. 1st ed. Berlin: Springer International Publishing; 2015. p. 227-40. Search in Google Scholar

Mahmood WS. The effect of incorporating carbon nanotubes on impact, transverse strength, hardness, and roughness to high impact denture base material. J Bagh Coll Dent 2015;27(1):96-9. Search in Google Scholar

Ibrahim RA. The effect of adding single walled carbon nanotube with different concentrations on mechanical properties of heat-cure acrylic denture base material. J Bagh Coll Dent 2015;27(3):28-32. Search in Google Scholar

Wang R, Tao J, Yu B, Dai L. Characterization of multiwalled carbon nano-tube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent 2014;111(4):318-26. Search in Google Scholar

Harini P, Mohamed K, Padmanabhan TV. Effect of Titanium dioxide nano-particles on the flexural strength of polymethylmethacrylate: an in vitro study. Indian J Dent Res 2014;25(4):459-63. Search in Google Scholar

Ahmed MA, El-Shennawy M, Althomali YM, Omar AA. Effect of titanium dioxide nano particles incorporation on mechanical and physical properties on two different types of acrylic resin denture base. World J Nano Sci Eng 2016;6(3):111-9. Search in Google Scholar

Asar NV, Albayrak H, Korkmaz T, Turkyilmaz I. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. J Adv Prosthodont 2013;5(3):241-7. Search in Google Scholar

Kul E, Aladağ Lİ, Yesildal R. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers. J Prosthet Dent 2016;116(5):803-10. Search in Google Scholar

Nejatian T, Johnson A, Van Noort R. Reinforcement of denture base resin. Adv Sci Technol 2006;49:124-9. Search in Google Scholar

Alwan SA, Alameer SS. The effect of the addition of silanized Nano titania fillers on some physical and mechanical properties of heat cured acrylic denture base materials. J Bagh Coll Dent 2015;27(1):86-91. Search in Google Scholar

Safi IN. Evaluation the effect of nano-fillers (TiO2, AL2O3, SiO2) addition on glass transition temperature, E-Modulus and coefficient of thermal expansion of acrylic denture base material. J Bagh Coll Dent 2014;26(1):37-41. Search in Google Scholar

Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly(methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent 2014;111(4):327-34. Search in Google Scholar

da Silva LH, Feitosa SA, Valera MC, de Araujo MA, Tango RN. Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology 2012;29(2):1019-23. Search in Google Scholar

Cevik P, Yildirim-Bicer AZ. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J Pros-thodont 2018;27(8):763-70. Search in Google Scholar

Al-Rais RY, Al-Nakkash WA, Al-Bakri AK. Filler reinforced acrylic denture base material. Part 2 – effect of water sorption on dimensional changes and transverse strength. J Bagh Coll Dent 2005;17(1):6-10. Search in Google Scholar

Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A. The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. Int J Dent 2016;2016:7094056. Search in Google Scholar

Zhang XJ, Zhang XY, Zhu BS, Qian C. Effect of nano ZrO2 on flexural strength and surface hardness of polymethylmethacrylate. Shanghai Kou Qiang Yi Xue 2011;20(4):358-63. Search in Google Scholar

Safi IN, Hassanen KA, Ali NA. Assessment of zirconium oxide nanofillers incorporation and silanation on impact, tensile strength and color alteration of heat polymerized acrylic resin. J Bagh Coll Dent 2012;24(2):36-42. Search in Google Scholar

Mohammed D, Mudhaffar M. Effect of modified zirconium oxide nano-fillers addition on some properties of heat cure acrylic denture base material. J Bagh Coll Dent 2012;24(4):1-7. Search in Google Scholar

Yu W, Wang X, Tang Q, Guo M, Zhao J. Reinforcement of denture base PMMA with ZrO(2) nanotubes. J Mech Behav Biomed Mater 2014;32:192-7. Search in Google Scholar

Mahross HZ, Baroudi K. Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material. Eur J Dent 2015;9(2):207-12. Search in Google Scholar

Hamedi-Rad F, Ghaffari T, Rezaii F, Ramazani A. Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures. J Dent (Tehran) 2014;11(5):495-505. Search in Google Scholar

Juan Carlos FA, Rene GC, Germán VS, Laura Susana AT. Antimicrobial poly(methyl methacrylate) with silver nanoparticles for dentistry: a systematic review. Appl Sci 2020;10(11):4007. doi: 10.3390/app10114007. Search in Google Scholar

Farina AP, Cecchin D, Soares RG, Botelho AL, Takahashi JM, Mazzetto MO, et al. Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fibre reinforcement. Gerodontology 2012;29(2):e155-60. Search in Google Scholar

Agha H, Flinton R, Vaidyanathan T. Optimization of fracture resistance and stiffness of heat-polymerized high impact acrylic resin with localized E-Glass Fiber Reinforcement® at different stress points. J Prosthodont 2016;25(8):647-55. Search in Google Scholar

Moreno-Maldonado V, Acosta-Torres LS, Barcelo-Santana FH, Vanegas-Lancon RD, Plata-Rodrıguez ME, Castano VM. Fiber-reinforced nano-pigmented poly(methyl methacrylate) as improved denture base. J Appl Polym Sci 2012;126:289-96. Search in Google Scholar

Jassim RK, Radhi AA. Evaluation the biological effect of two types of denture base materials reinforced with silanated glass fiber. J Bagh Coll Dent 2011;23(2):26-30. Search in Google Scholar

Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Pros-thodont 2013;5(2):153-60. Search in Google Scholar

Yu SH, Ahn DH, Park JS, Chung YS, Han IS, Lim JS, et al. Comparison of denture base resin reinforced with polyaromatic polyamide fibers of different orientations. Dent Mater J 2013;32(2):332-40. Search in Google Scholar

Chen SY, Liang WM, Yen PS. Reinforcement of acrylic denture base resin by incorporation of various fibers. J Biomed Mater Res 2001;58(2):203-8. Search in Google Scholar

Uzun G, Hersek N, Tinçer T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J Prosthet Dent 1999;81(5):616-20. Search in Google Scholar

Mowade TK, Dange SP, Thakre MB, Kamble VD. Effect of fiber reinforcement on impact strength of heat polymerized polymethyl methacrylate denture base resin: in vitro study and SEM analysis. J Adv Prosthodont 2012;4(1):30-6. Search in Google Scholar

John J, Ann Mani S, Palaniswamy K, Ramanathan A, Razak AA. Flex-ural properties of poly(methyl methacrylate) resin reinforced with oil palm empty fruit bunch fibers: a preliminary finding. J Prosthodont 2015;24(3):233-8. Search in Google Scholar

Xu J, Li Y, Yu T, Cong L. Reinforcement of denture base resin with short vegetable fiber. Dent Mater 2013;29(12):1273-9. Search in Google Scholar

Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 2015;112-113:75-93. doi: 10.1016/j.clay.2015.05.001. Search in Google Scholar

Bertolino V, Cavallaro G, Milioto S, Lazzara G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr Polym 2020;245:116502. doi: 10.1016/j.carbpol.2020.116502. Search in Google Scholar

Sakiewicz P, Lutynski M, Soltys J, Pytlinski A. Purification of halloysite by magnetic separation. Physicochem Probl Miner Process 2016;52(2):911-1001. Search in Google Scholar

Abdallah RM. Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes. J Adv Prosthodont 2016;8(3):167-71. doi: 10.4047/jap.2016.8.3.167. Search in Google Scholar

Fister JS, Memoli VA, Galante JO, Rosteker W, Urban MR. Biocompatibility of Derlin 150: A creep-resistant polymer for total join prostheses. J Biomed Mater Res 1985;19(5):519-33. Search in Google Scholar

Maeda M. Experimental studies on polyacetal composites for joint pros-thesis. Nihon Seikeigeka Gakkai Zasshi 1984;58(9):919-36. Search in Google Scholar

Kirsch A, Ackermann KL. The IMZ osteointegrated implant system. Dent Clin North Am 1989;33(4):733-91. Search in Google Scholar

Lagemann U, Heinzelmann I. Azetal – ein innovativer Werkstoff. Quintessenz Zahntechnik 1997;23:797-804. Search in Google Scholar

Rutkowski A. Acetal – estetyczna alternatywa rozwiązań protetycznych. Nowocz Tech Dent 2007;4:35-8. Search in Google Scholar

Sikorska-Bochińska J, Urbanek R. Elastyczne i sprężyste tworzywo na protezy ruchome i stałe w aspekcie alergii kontaktowej. Twój Prz Stomatol 2005;5:32-4. Search in Google Scholar

Ardelean L, Bortun CM, Podariu AC, Rusu LC. Thermoplastic resins used in dentistry. In: Das CK, editor. Thermoplastic elastomers – synthesis and applications. London: Intech Open; 2015. doi: 10.5772/60931. Search in Google Scholar

Kieć-Świerczyńska M. Alergia kontaktowa. Świat Med Farm 2003;46:53-9. Search in Google Scholar

Ślusarski P, Langot C. Zastosowanie materiału T.S.M. Acetal Dental w wykonawstwie kosmetycznej częściowej protezy nieosiadającej – opis przypadku. Stomatol Współ 2008;5:29-31. Search in Google Scholar

Wawrzynkiewicz T, Ledzion S. Współczesne poglądy na alergię w stomatologii. Stom Współcz 1997;16:19-21. Search in Google Scholar

Bielski J, Kaśka M. Wpływ metalowych uzupełnień protetycznych na procesy elektrochemiczne w jamie ustnej. Protet Stomatol 1973;23:379-85. Search in Google Scholar

Spiechowicz E. Uczulenia na chrom i nikiel. Protet Stomatol 1981;31:1-6. Search in Google Scholar

Arikan A, Ozkan YK, Arda T, Akalin B. An in vitro investigation of water sorption and solubility of two acetal denture base materials. Eur J Pros-thodont Restor Dent 2005;13(3):119-22. Search in Google Scholar

Frączak B, Sobolewska E, Ey-Chmielewska H, Chlubek D, Noceń I. The influence of nutritional factors and saliva pH on the shade of resin. Pol J Environ Stud 2007;16(2):353-7. Search in Google Scholar

Sobolewska E, Frączak B, Ey-Chmielewska H, Czarnomysy-Furowicz D, Karakulska J, Ferlas M. Żywotność podstawowych szczepów bakteryjnych na wybranych materiałach protetycznych. Protet Stomatol 2009;59(3):170-1. Search in Google Scholar

Sobolewska E, Frączak B, Czarnomysy-Furowicz D, Ey-Chmielewska H, Karakulska J. Bacteria adhesion to the surface of various prosthetics materials. Ann Acad Med Stetin 2007;53(2):68-71. Search in Google Scholar

Sobolewska E, Frączak B, Lipski M, Grabikowska-Prowans K, Kosierkiewicz A. Żywica acetalowa jako zewnętrzny czynnik alergizujący w środowisku jamy ustnej – badania kliniczne i laboratoryjne. Dent Med Probl 2010;47(1):17-24. Search in Google Scholar

Sobolewska E, Frączak B, Ey-Chmielewska H, Machoy-Mokrzyńska A. Wpływ żywicy acetalowej na tkanki w badaniach in vitro. Protet Stomatol 2007;57(5):45. Search in Google Scholar

Sobolewska E, Frączak B, Ey-Chmielewska H, Machoy-Mokrzyńska A. Wpływ żywicy acetalowej na tkanki w badaniach na szczurach szczepu Wistar. Protet Stomatol 2008;58(6):419-23. Search in Google Scholar

Sobolewska E, Frączak B, Safronow K, Kosierkiewicz A, Lipski M. Wpływ wybranych materiałów stosowanych w protetyce odtwórczej na reakcję tkanek w badaniach in vitro. Dent Med Probl 2009;46(1):33-9. Search in Google Scholar

Staniland P, Wilde CJ, Bottino FA, Di Pasquale G, Pollicino A, Recca A. Synthesis, characterization and study of the thermal properties of new polyarylene ethers. Polymer 1992;33(9):1976-81. Search in Google Scholar

Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28(32):4845-69. Search in Google Scholar

Green S, Schlegel J. A polyaryletherketone biomaterial for use in medical implant applications. Chem Artic News 2015;5(8):1-9. Search in Google Scholar

Monich PR, Berti FV, Porto LM, Henriques B, Novaes de Oliveira AP, Fredel MC, et al. Physicochemical and biological assessment of PEEK composites embedding natural amorphous silica fibers for biomedical applications. Mater Sci Eng C Mater Biol Appl 2017;79:354-62. Search in Google Scholar

Xin H, Shepherd D, Dearn K. Strength of polyether-ether-ketone: effects of sterilisation and thermal ageing. Polym Test 2013;32(6):1001-5. Search in Google Scholar

Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral Implantol 2013;39(6):743-9. Search in Google Scholar

Kizuki T, Matsushita T, Kokubo T. Apatite-forming PEEK with TiO2 surface layer coating. J Mater Sci Mater Med 2015;26(1):5359. doi: 10.1007/s10856-014-5359-1. Search in Google Scholar

Garcia-Gonzalez D, Rusinek A, Jankowiak T, Arias A. Mechanical impact behavior of polyether-ether-ketone (PEEK). Compos Struct 2015;124:88-99. Search in Google Scholar

Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60(1):12-9. doi: 10.1016/j.jpor.2015.10.001. Search in Google Scholar

Zoidis P, Papathanasiou I, Polyzois G. The use of a modified poly-ether-ether-ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report. Prosthodont 2016;25(7):580-4. Search in Google Scholar

Fan JP, Tsui CP, Tang CY, Chow CL. Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials 2004;25(23):5363-73. Search in Google Scholar

Han CM, Lee EJ, Kim HE, Koh YH, Kim KN, Ha Y, et al. The electron beam deposition of titanium on polyethereethereketone (PEEK) and resulting enhanced biological properties. Biomaterials 2010;31(13):3465-70. Search in Google Scholar

Williams DF, McNamara A, Turner RM. Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. J Material Sci Letters 1987;6:188-90. Search in Google Scholar

Katzer A, Marquardt H, Westendorf J, Wening JV, von Foerster G. Polyetheretherketone – cytotoxity and mutagenicity in vitro. Biomaterials 2002;23(8):1749-59. Search in Google Scholar

Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima – a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 2013;17:221-8. Search in Google Scholar

Rabiei A, Sandukas S. Processing and evaluation of bioactive coatings on polymeric implants. J Biomed Mater Res A 2013;101(9):2621-9. Search in Google Scholar

Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, et al. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res A 2013;101(2):465-71. Search in Google Scholar

Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials 2014;35(25):6758-75. doi: 10.1016/j.biomaterials.2014.04.085. Search in Google Scholar

Poulsson AH, Eglin D, Zeiter S, Camenisch K, Sprecher C, Agarwal Y, et al. Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials 2014;35(12):3717-28. Search in Google Scholar

Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 2014;15(4):5426-45. Search in Google Scholar

Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, et al. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 2013;34(9):2234-43. Search in Google Scholar

Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials 2008;29(11):1563-72. Search in Google Scholar

Niki Y, Matsumoto H, Otani T, Suda Y, Toyama Y. Metal ion concentrations in the joint fluid immediately after total knee arthroplasty. Mod Rheumatol 2001;11(3):192-6. Search in Google Scholar

Toth JM, Wang M, Estes BT, Scifert JL, Seim III HB, Turner AS. Polieteroeteroketon jako materiał do zastosowań kręgosłupa. Biomateriały 2006;27(3):324-34. Search in Google Scholar

Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, et al. Peri-implant inflammation defined by the implant-abutment interface. J Dent Res 2006;85(5):473-8. Search in Google Scholar

Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Retal Res 2012;14(2):170-83. Search in Google Scholar

Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006;27(11):2331-9. Search in Google Scholar

Sanpo N, Tan ML, Cheang P, Khor KA. Antibacterial property of cold-sprayed HA-Ag/PEEK coating. J Therm Spray Techn 2009;18(1):10-5. Search in Google Scholar

Sandukas S, Yamamoto A, Rabiei A. Osteoblast adhesion to functionally graded hydroxyapatite coatings doped with silver. J Biomed Mater Res A 2011;97(4):490-7. Search in Google Scholar

Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 2010;7:20-30. Search in Google Scholar

Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 2013;7(1):30-6. Search in Google Scholar

Hallmann L, Mehl A, Sereno N, Hämmerle CH. The improvement of adhesive properties of PEEK through different pre-treatments. Appl Surf Sci 2012;258(18):7213-8. Search in Google Scholar

Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, et al. Polyetheretherketone – a suitable material for fixed dental prostheses. J Biomed Mater Res B Appl Biomater 2013;101(7):1209-16. Search in Google Scholar

Costa-Palau S, Torrents-Nicolas J, Brufau-de Barberà M, Cabratosa-Termes J. Use of polyetheretherketone in the fabrication of a maxillary obturator prosthesis: a clinical report. J Prosthet Dent 2014;112(3):680-2. Search in Google Scholar

eISSN:
2719-6313
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health