1. bookTom 17 (2016): Zeszyt 1 (March 2016)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1407-6179
Pierwsze wydanie
20 Mar 2000
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Groupage Cargo Transportation Model

Data publikacji: 22 Feb 2016
Tom & Zeszyt: Tom 17 (2016) - Zeszyt 1 (March 2016)
Zakres stron: 60 - 72
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1407-6179
Pierwsze wydanie
20 Mar 2000
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Coello Coello, C.A., and Lamont, G.B. (2004) Applications of Multi-Objective Evolutionary Algorithms. Vol. 1: Advances in Natural Computation. New Jersey-London-Singapore-Berlin-Shanghai-Hong Kong-Taipei-Chennai: World Scientific, xxvii+761 p.10.1142/9789812567796_0001Search in Google Scholar

2. Courant, R. (1989) Partial Differential Equations. New York-London: Wiley VCH, xxii+830 p.Search in Google Scholar

3. Davenport, H. (2008) The Higher Arithmetic: An Introduction to the Theory of Numbers. Cambridge, UK: Cambridge University Press, ix+239.10.1017/CBO9780511818097Search in Google Scholar

4. Deb, K. (2001) Multi-objective Optimization Using Evolutionary Algorithms. Chichester-New York-Weinheim-Brisbane-Singapore-Toronto: John Wiley & Sons, xix+497 p.Search in Google Scholar

5. Gembicki, F.W. (1973) Vector Optimization for Control with Performance and Parameter Sensitivity Indices. Ph.D. Thesis, Department of System Engineering, Case Western Reserve University, Cleveland, USA, 204 p.Search in Google Scholar

6. Gembicki, F.W., and Haimes, Y.Y. (1975) Approach to Performance and Sensitivity Multiobjective Optimization: The Goal Attainment Method. IEEE Transactions on Automatic Control, 29(6), pp. 769-771.10.1109/TAC.1975.1101105Search in Google Scholar

7. Goncharsky, A.V., Leonov, A.S., and Yagola, A.G. (1973) A generalized residual principle. Computational Mathematics and Mathematical Physics, 13(2), pp. 294-302.Search in Google Scholar

8. Kang, M.H., Choi, H.R., Kim, H.S., and Park, B.J. (2012) Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36(3), pp. 585-604.10.1007/s10489-011-0278-zSearch in Google Scholar

9. Liotta, G., Stecca, G., and Kaihara, T. (2015) Optimisation of freight flows and sourcing in sustainable production and transportation networks. International Journal of Production Economics, 164, pp. 351-365.10.1016/j.ijpe.2014.12.016Search in Google Scholar

10. Masane-Ose, J. (2014) Competitive position of the Baltic States Ports. Riga, Latvia: KPMG International Cooperative. (Transport & Logistics, pp. 1-12; https://www.kpmg.lv)Search in Google Scholar

11. Medvedeva, A.A. (2014) Opportunities to reduce aggregate expenditures by means of creating a strategic alliance by maritime cargo transportation. M.Sc. Thesis in Transport and Logistics. Riga, Latvia: Transport and Telecommunication Institute, Faculty of Transport and Logistics, 62 p.Search in Google Scholar

12. Nikolaeva, L.L., and Tsymbal, N.N. (2005) Maritime Transportation. Odessa, Ukraine: FENIX Press, 424 p.Search in Google Scholar

13. Song, D.-W., and Panayides, Ph.M. (2012) Maritime Logistics: A Complete Guide to Effective Shipping and Port Management. London-Philadelphia-New Delhi: Kogan Page, 344 p.Search in Google Scholar

14. Steuer, R.E. (1986) Multiple Criteria Optimization: Theory, Computation, and Application. New York, USA: John Wiley & Sons, xx+546 p.Search in Google Scholar

15. Swiss Re Economic Research & Consulting. (2001-2015) World Insurance Reports No 6/2001; No 6/2002; No 8/2003; No 3/2004; No 2/2005; No 5/2006; No 4/2007; No 3/2008; No 3/2009; No 2/2010; No 2/2011; No 3/2012; No 3/2013; No 3/2014; No 4/2015. Zurich, Switzerland: Swiss Re, sigma. http://www.swissre.com/sigma/Search in Google Scholar

16. Tikhonov, A.N. (1966) Ill-posed optimal planning problems. Journal of Computational Mathematics and Mathematical Physics, 6(1), pp. 81-89.Search in Google Scholar

17. Tikhonov, A.N., Karmanov, V.G., and Rudneva, T.L. (1969) On the stability of linear programming problems. In: Numerical Methods and Programming, XII. Moscow: Lomonosov Moscow State University Press, pp. 3-9.Search in Google Scholar

18. Tikhonov, A.N., and Arsenin, V.Y. (1977) Solutions of Ill-Posed Problems. New York, USA: Halsted Press, xiii+258 p.Search in Google Scholar

19. Tuy, H., Chinchuluun, A., Pardalos, P.M., Migdalas, A., and Pitsoulis, L. (2008) Pareto Optimality, Game Theory and Equilibria. New York: Springer, 871 p.10.1007/978-0-387-77247-9Search in Google Scholar

20. Wakeman, Th., and Bomba, M. (2010) Maritime Freight Transportation, National Economic Recovery, and Global Sustainability: Coordinating a Strategic Plan. Transportation Research Board of the National Academies of Sciences, Engineering, Medicine. TR News: Globalization and Transportation, 269, pp. 14-20.Search in Google Scholar

21. Weil, A. (2013) Basic Number Theory. Berlin-Heidelberg: Springer-Verlag, xviii+316 p.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo