Otwarty dostęp

Estimation of pile displacements anchored in sand after a large number of cycles


Zacytuj

[1] Messast, S., Boulon, M., & Flavigny, E. (2008).Constitutive Modeling of the Cyclic Behaviorof Sands In Drained Condition. Studia Geotechnica And Mechanica,1(2),131-137. Search in Google Scholar

[2] Benzaria,O., Kouby, A., L, & Puech, A. (2010). Physical and Numerical Modelling of Cyclic Axial LoadingResponse of Piles. National Days of Geotechnics and Geology of the Engineer JNGG,7-9 juillet 2010, Grenoble, 555-562. Search in Google Scholar

[3] Bekki, H., Tali, B., Canou, J., Dupla, J.C., & Bouafia, A. (2014). Behavior of soil-structure interfaces under cyclic loading for large numbers of cycles: Application to Piles, J. Appl. Eng. Sci. Technol, 1(1),11-16. Search in Google Scholar

[4] Puech, A., Canou, J., Bernardini, C. (2008) SOLCYP : Un projet national de recherche sur le comportement des pieux sous chargement cyclique. JNGG 2008. Search in Google Scholar

[5] Rakotonindriana, M. H. J. (2009). Behavior of piles and groups of piles under cyclic side loading, Ph.D. dissertation, National School of Bridges and Roads. Central Laboratory of Bridges and Roads. Search in Google Scholar

[6] Desai, C., Drumm, E., & Zaman, M. (1985). Cyclic Testing and Modeling of Interfaces, ASCE JGE, 111(6), 793-815.10.1061/(ASCE)0733-9410(1985)111:6(793) Search in Google Scholar

[7] Johnston, I., Lam, T., & Williams, A. (1987). Constant Normal Stiffness Direct Shear Testing For Socketed Pile Design In Weak Reak. J. Géotechnical, 37(1), 83-89. Search in Google Scholar

[8] Al-Douri, R. H., & Poulos, H. G. (1991). Static And Cyclic Shear Tests On Carbonate Sands. ASTM-GTJ, 15(2), 138-157. Search in Google Scholar

[9] Tabucanon, J., Airey, D., & Poulos, H. (1995). Pile Skin Friction In Sand From Constant Normal Stiffness Test, ASTM GTJ, 18(3), 350-364.10.1520/GTJ11004J Search in Google Scholar

[10] Fakharian, K., & Evgin, E. (1997). Cyclic Simple Shear Behaviour of Sand-Steel Interfaces Under Constant Normal Stiffness Condition, ASCE JGGE, 123(12), 1096-1105.10.1061/(ASCE)1090-0241(1997)123:12(1096) Search in Google Scholar

[11] Mortara, G. (2001). An Elastoplastic Model for Sand-Structure Interface Behaviour Under Monotonic and Cyclic Loading, Ph.D dissertation, Politecnico Di Torino-Italy. Search in Google Scholar

[12] Desai, C., & Nagaraj, B. (1988). Modeling for Cyclic Normal and Shear Behavior of Interfaces, ASCE JGE, 114(7), 1198-1217.10.1061/(ASCE)0733-9399(1988)114:7(1198) Search in Google Scholar

[13] Aubry, D., Modaressi, A., & Modaressi, H. (1990). A Constitutive Model for Cyclic Behavior of Interfaces with Variable Dilatancy, J. Computers and Geotechnics, 9(1/2), 47-58.10.1016/0266-352X(90)90028-T Search in Google Scholar

[14] Boulon, M., & Jarzebowsky, A. (1991). Rate Type and Elasto-Plastic Approaches for Soil-Structure Interface Behavior : A Comparison, Proc7th Int. Conf IACMAG, Carins, Australia, 305-310. Search in Google Scholar

[15] Mortara, G., Boulon, M., & Ghionna, V. (2002). A 2-D constitutive model for cyclic interface behaviour, International Journal for Numerical and Analytical Methods in Geomechanics, 26, 1071-1096.10.1002/nag.236 Search in Google Scholar

[16] Shahrour, I., & Rezaie, F. (2002). An Elasto-Plastic Constitutive Relation for Soil-Structure Interface Under Cyclic Loading, J. Computers and Geotechnics, 52 (1), 41-50. Search in Google Scholar

[17] Pra-ai, S., Martin, A., & Boulon, M. (2010). Soil-Structure Direct Shear Involving a Large Number of Cycles, Experiments and First Steps of Modelling, Procceding National Days of Geotechnics and Geology Engineering, 7-9 juillet, Grenoble, pp. 327-334. Search in Google Scholar

[18] Amrane, M., & Messast, S. (2017). Modeling the Behavior of Geotechnical Constructions Under Cyclic Loading With a Numerical Approach Based on J. Lemaitre Model, Indian Geotechnical Journal, 48, 520-528. Search in Google Scholar

[19] Boulon, M., & Puech, A. (1984). Numerical Simulation of the Behavior of Piles Under Cyclic Axial Loading, J. French Geotechnical Review, 26, 7-20. Search in Google Scholar

[20] Melchior Filho, J., Bonan,V.H.F., Moura, A.S. (2020). Experimental Study of the Group Effect on the Bearing Capacity of Bored Piles in Sandy Soil, Soils and Rocks, 43(1), 11-20.10.28927/SR.431011 Search in Google Scholar

[21] Benzaria, O. (2003). Contribution to the Study of the Behavior of Isolated Piles Under Axial Cyclic Loadings, Ph.D. dissertation, Unversity of Pais-Est. Search in Google Scholar

[22] Rouhanifar, Salman, et al. (2020). Strength and deformation behaviour of sand-rubber mixture. International Journal of Geotechnical Engineering: 1-15. Search in Google Scholar

[23] Majedi MR, et al. (2021). A micromechanical model for simulation of rock failure under high strain rate loading. International Journal of Civil Engineering. 19(5): 501-15. Search in Google Scholar

[24] Poulos, H.G. (1981). Cyclic Axial Response of Single Pile. JnI. Geot. Eng. Divn, ASCE, 107(7), 41-58. Search in Google Scholar

eISSN:
1338-7278
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other