Otwarty dostęp

Evaluation of concrete deterioration under simulated acid rain environment


Zacytuj

[1] Zhou, C., Zhu, Z., Wang, Z., & Qiu, H. (2018). Deterioration of concrete fracture toughness and elastic modulus under simulated acid-sulfate environment. Constr. Build. Mater. 176, 490-499. DOI: 10.1016/j.conbuildmat.2018.05.049.10.1016/j.conbuildmat.2018.05.049Open DOISearch in Google Scholar

[2] Chen, M. C., Wang, K., & Xie, L. (2013). Deterioration mechanism of cementitious materials under acid rain attack. Eng. Fail. Anal. 27, 272-285. DOI: 10.1016/j.engfailanal.2012.08.007.10.1016/j.engfailanal.2012.08.007Open DOISearch in Google Scholar

[3] Fan, Y. F., & Luan, H. Y. (2013). Pore structure in concrete exposed to acid deposit. Constr. Build. Mater. 49, 407-416. DOI: 10.1016/j.conbuildmat.2013.08.075.10.1016/j.conbuildmat.2013.08.075Open DOISearch in Google Scholar

[4] Mahdikhani, M., Bamshad, O., & Shirvani, M. F. (2018). Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition. Constr. Build. Mater. 167, 929-935. DOI: 10.1016/j.conbuildmat.2018.01.137.10.1016/j.conbuildmat.2018.01.137Open DOISearch in Google Scholar

[5] Zhao, S., & Sun, W. (2014). Nano-mechanical behavior of a green ultra-high performance concrete. Constr. Build. Mater. 63, 150-160. DOI: 10.1016/j.conbuildmat.2014.04.029.10.1016/j.conbuildmat.2014.04.029Open DOISearch in Google Scholar

[6] Rozière, E., Loukili, A., El Hachem, R., & Grondin, F. (2009). Durability of concrete exposed to leaching and external sulphate attacks. Cement Concrete Res. 39(12), 1188-1198. DOI: 10.1016/j.cemconres.2009.07.021.10.1016/j.cemconres.2009.07.021Open DOISearch in Google Scholar

[7] Fan, Y. F., Hu, Z. Q., Zhang, Y. Z., & Liu, J. L. (2010). Deterioration of compressive property of concrete under simulated acid rain environment. Constr. Build. Mater. 24(10), 1975-1983. DOI: 10.1016/j.conbuildmat.2010.04.002.10.1016/j.conbuildmat.2010.04.002Search in Google Scholar

[8] Okochi, H., Kameda, H., Hasegawa, S. I., Saito, N., Kubota, K., & Igawa, M. (2000). Deterioration of concrete structures by acid deposition-an assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens. Atmos. Environ. 34(18), 2937-2945. DOI: 10.1016/S1352-2310(99)00523-3.10.1016/S1352-2310(99)00523-3Search in Google Scholar

[9] Zivica, V., & Bajza, A. (2001). Acidic attack of cement based materials—a review.: Part 1. Principle of acidic attack. Constr. Build. Mater. 15(8), 331-340. DOI: 10.1016/S0950-0618(01)00012-5.10.1016/S0950-0618(01)00012-5Search in Google Scholar

[10] Paris, J. M., Roessler, J. G., Ferraro, C. C., DeFord, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. J. Clean. Prod. 121, 1-18. DOI: 10.1016/j.jclepro.2016.02.013.10.1016/j.jclepro.2016.02.013Search in Google Scholar

[11] Slovak Office of Standards, Metrology and Testing. (2017). Concrete. Specification, performance, production and conformity. STN EN 206+A1. Bratislava.Search in Google Scholar

[12] Slovak Office of Standards, Metrology and Testing. (1989). Determination of moisture content, absorptivity and capillarity of concrete. STN 73 1316. Bratislava.Search in Google Scholar

[13] Estokova, A., Smolakova, M., & Luptakova, A. (2018). Calcium Extraction from Blast-Furnace-Slag-Based Mortars in Sulphate Bacterial Medium. Buildings 8(1), 9. DOI: 10.3390/buildings8010009.10.3390/8010009Open DOISearch in Google Scholar

eISSN:
1338-7278
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other