Zacytuj

Grubman A, & White AR. (2014). Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med. 16:e11. doi: 10.1017/erm.2014.11.24849048GrubmanAWhiteAR2014Copper as a key regulator of cell signalling pathwaysExpert Rev Mol Med16e1110.1017/erm.2014.11Open DOISearch in Google Scholar

Turski ML, & Thiele DJ. (2009). New roles for copper metabolism in cell proliferation, signaling, and disease. J. Biol. Chem. 284:717–721.10.1074/jbc.R80005520018757361TurskiMLThieleDJ2009New roles for copper metabolism in cell proliferation, signaling, and diseaseJ. Biol. Chem284717721Open DOISearch in Google Scholar

Denoyer D, Masaldan S, La Fontaine S, & Cater MA. (2015). Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics.7(11):1459–76.10.1039/C5MT00149H26313539DenoyerDMasaldanSLa FontaineSCaterMA2015Targeting copper in cancer therapy: ‘Copper That Cancer’Metallomics711145976Open DOISearch in Google Scholar

Hanahan D, & Weinberg RA. (2011). Hallmarks of cancer: The next generation. Cell. 144:646–674.10.1016/j.cell.2011.02.01321376230HanahanDWeinbergRA2011Hallmarks of cancer: The next generationCell144646674Open DOISearch in Google Scholar

Gupte A, & Mumper RJ. (2009). Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 35(1):32–46.1877465210.1016/j.ctrv.2008.07.004GupteAMumperRJ2009Elevated copper and oxidative stress in cancer cells as a target for cancer treatmentCancer Treat Rev3513246Search in Google Scholar

Kuo HW, Chen SF, Wu CC, Chen DR, & Lee JH. (2002). Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res. 89(1):1–11.1241304610.1385/BTER:89:1:1KuoHWChenSFWuCCChenDRLeeJH2002Serum and tissue trace elements in patients with breast cancer in TaiwanBiol Trace Elem Res891111Search in Google Scholar

Zuo XL, Chen JM, Zhou X, Li XZ, & Mei GY. (2006). Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia. Biol Trace Elem Res. 114(1–3):41–53.1720598610.1385/BTER:114:1:41ZuoXLChenJMZhouXLiXZMeiGY2006Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemiaBiol Trace Elem Res1141–34153Search in Google Scholar

Nayak SB, Bhat VR, Upadhyay D, & Udupa SL. (2003). Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian J Physiol Pharmacol. 47(1):108–10.12708132NayakSBBhatVRUpadhyayDUdupaSL2003Copper and ceruloplasmin status in serum of prostate and colon cancer patientsIndian J Physiol Pharmacol47110810Search in Google Scholar

Habib FK, Dembinski TC, & Stitch SR. (1980). The zinc and copper content of blood leucocytes and plasma from patients with benign and malignant prostates. Clin Chim Acta. 104(3):329–35.10.1016/0009-8981(80)90390-36156038HabibFKDembinskiTCStitchSR1980The zinc and copper content of blood leucocytes and plasma from patients with benign and malignant prostatesClin Chim Acta104332935Open DOISearch in Google Scholar

J.L., Díez M. Arroyo M. Cerdàn F.J. Muñoz M. Martin M.A. & Balibrea J.L. (1989). Serum and Tissue Trace Metal Levels in Lung Cancer. Oncology; 46:230–234.10.1159/0002267222740065DíezJ.L.ArroyoM.CerdànM.MuñozF.J.MartinM. M.A.BalibreaJ.L.1989Serum and Tissue Trace Metal Levels in Lung CancerOncology46230234Open DOISearch in Google Scholar

Brem S, Grossman SA, Carson KA, New P, Phuphanich S, Alavi JB, Mikkelsen T, & Fisher JD. (2005). Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro Oncol.7(3):246–53.10.1215/S115285170400086916053699BremSGrossmanSACarsonKANewPPhuphanichSAlaviJBMikkelsenTFisherJD2005Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastomaNeuro Oncol7324653187191716053699Open DOISearch in Google Scholar

Yoshii J, Yoshiji H, Kuriyama S, Ikenaka Y, Noguchi R, Okuda H, Tsujinoue H, Nakatani T, Kishida H, Nakae D, Gomez DE, De Lorenzo MS, Tejera AM, & Fukui H. (2001). The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int J Cancer. 94(6):768–773.1174547610.1002/ijc.1537YoshiiJYoshijiHKuriyamaSIkenakaYNoguchiROkudaHTsujinoueHNakataniTKishidaHNakaeDGomezDEDe LorenzoMSTejeraAMFukuiH2001The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cellsInt J Cancer94676877311745476Search in Google Scholar

Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, & Hanahan D. (2013). Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci U S A.110(48):19507–12.2421857810.1073/pnas.1318431110IshidaSAndreuxPPoitry-YamateCAuwerxJHanahanD2013Bioavailable copper modulates oxidative phosphorylation and growth of tumorsProc Natl Acad Sci U S A110481950712384513224218578Search in Google Scholar

Shun Li, Jing Zhang, Hong Yang, Chunhui Wu, Xitong Dang, & Yiyao Liua. (2015). Copper depletion inhibits CoCl2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of Snail/Twist-mediated epithelial-mesenchymal transition. Sci Rep. 5: 12410.26174737ShunLiZhangJingYangHongWuChunhuiDangXitongLiuaYiyao2015Copper depletion inhibits CoCl2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of Snail/Twist-mediated epithelial-mesenchymal transitionSci Rep51241010.1038/srep12410450243126174737Search in Google Scholar

Ou CC, Tsao SM, Lin MC, & Yin MC. (2003). Protective action on human LDL against oxidation and glycation by four organosulfur compounds derived from garlic. Lipids. 38(3):219–24.10.1007/s11745-003-1054-412784861OuCCTsaoSMLinMCYinMC2003Protective action on human LDL against oxidation and glycation by four organosulfur compounds derived from garlicLipids3832192412784861Open DOISearch in Google Scholar

Campos JF, de Castro DT, Damião MJ, Vieira Torquato HF, Paredes-Gamero EJ, Carollo CA, Estevinho LM, de Picoli Souza K, & Dos Santos EL. (2016). The Chemical Profile of Senna velutina Leaves and Their Anti-oxidant and Cytotoxic Effects. Oxid Med Cell Longev. 2016:8405957.CamposJFde CastroDTDamiãoMJVieira TorquatoHFParedes-GameroEJCarolloCAEstevinhoLMde Picoli SouzaKDos SantosEL2016The Chemical Profile of Senna velutina Leaves and Their Anti-oxidant and Cytotoxic EffectsOxid Med Cell Longev20168405957Search in Google Scholar

Flora SJ, & Pachauri V. (2010). Chelation in metal intoxication. Int J Environ Res Public Health. 7(7):2745–88.2071753710.3390/ijerph7072745FloraSJPachauriV2010Chelation in metal intoxicationInt J Environ Res Public Health77274588292272420717537Search in Google Scholar

Yoshii J, Yoshiji H, Kuriyama S, Ikenaka Y, Noguchi R, Okuda H, Tsujinoue H, Nakatani T, Kishida H, Nakae D, Gomez DE, De Lorenzo MS, Tejera AM, & Fukui H. (2001). The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int J Cancer. 15;94(6):768–73.YoshiiJYoshijiHKuriyamaSIkenakaYNoguchiROkudaHTsujinoueHNakataniTKishidaHNakaeDGomezDEDe LorenzoMSTejeraAMFukuiH2001The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cellsInt J Cancer159467687310.1002/ijc.1537Search in Google Scholar

Yoshiji H1, Yoshii J, Kuriyama S, Ikenaka Y, Noguchi R, Yanase K, Namisaki T, Kitade M, Yamazaki M, & Fukui H. (2005). Combination of copper-chelating agent, trientine, and methotrexate attenuates colorectal carcinoma development and angiogenesis in mice. Oncol Rep. 14(1):213–8.15944792YoshijiH1YoshiiJKuriyamaSIkenakaYNoguchiRYanaseKNamisakiTKitadeMYamazakiMFukuiH2005Combination of copper-chelating agent, trientine, and methotrexate attenuates colorectal carcinoma development and angiogenesis in miceOncol Rep1412138Search in Google Scholar

Zhang W, Chen C, Shi H, Yang M, Liu Y, Ji P, Chen H, Tan RX, & Li E. (2016). Curcumin is a biologically active copper chelator with antitumor activity. Phyto-medicine. 15;23(1):1–8.ZhangWChenCShiHYangMLiuYJiPChenHTanRXLiE2016Curcumin is a biologically active copper chelator with antitumor activityPhyto-medicine152311810.1016/j.phymed.2015.11.00526902401Search in Google Scholar

Kenyon G Daniel, Di Chen, Shirley Orlu, Qiuzhi Cindy Cui, Fred R Miller, & Q Ping Dou. (2005). Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res. 7(6): R897–R908.1628003910.1186/bcr1322DanielKenyon GChenDiOrluShirleyCindy CuiQiuzhiMillerFred RDouQ Ping2005Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cellsBreast Cancer Res76R897R908141074116280039Search in Google Scholar

Hellman NE, & Gitlin JD. (2002). Ceruloplasmin metabolism and function. Annu Rev Nutr. 22:439–58.1205535310.1146/annurev.nutr.22.012502.114457HellmanNEGitlinJD2002Ceruloplasmin metabolism and functionAnnu Rev Nutr224395812055353Search in Google Scholar

Ohrvik H, & Thiele DJ. (2014). How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann N Y Acad Sci. 1314:32–41.10.1111/nyas.1237124697869OhrvikHThieleDJ2014How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1Ann N Y Acad Sci13143241415827524697869Open DOISearch in Google Scholar

AC. Rosenzweig. (2001). Copper delivery by metallo-chaperone proteins. Acc Chem Res.34(2):119–28.10.1021/ar000012pRosenzweigAC2001Copper delivery by metallo-chaperone proteinsAcc Chem Res3421192811263870Open DOISearch in Google Scholar

Wang J, Luo C, Shan C, You Q, Lu J, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, Kang H, Lin R, Han D, Xie Y, Karpus J, Chen S, Ouyang S, Luan C, Zhang N, Ding H, Merkx M, Liu H, Chen J, Jiang H, & He C. (2015). Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem. 7(12):968–79.2658771210.1038/nchem.2381WangJLuoCShanCYouQLuJElfSZhouYWenYVinkenborgJLFanJKangHLinRHanDXieYKarpusJChenSOuyangSLuanCZhangNDingHMerkxMLiuHChenJJiangHHeC2015Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferationNat Chem71296879472505626587712Search in Google Scholar

Fatfat M, Merhi RA, Rahal O, Stoyanovsky DA, Zaki A, Haidar H, Kagan VE, Gali-Muhtasib H1, & Machaca K. (2014). Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer. 21;14:527.FatfatMMerhiRARahalOStoyanovskyDAZakiAHaidarHKaganVEGali-MuhtasibH1MachacaK2014Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen speciesBMC Cancer211452710.1186/1471-2407-14-527422362025047035Search in Google Scholar

Lemar KM, Aon MA, Cortassa S, O’Rourke B, Müller CT, Lloyd D. (2007). Diallyl disulphide depletes glutathione in Candida albicans. Yeast. 24(8):695–706.17534841LemarKMAonMACortassaSO’RourkeBMüllerCTLloydD2007Diallyl disulphide depletes glutathione in Candida albicansYeast24869570610.1002/yea.1503229248517534841Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other