Zacytuj

1. Tu JV, Pashos CL, Naylor CD, et al. (1997). Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N. Engl. J. Med. 336(21), 1500–1505. DOI:10.1056/NEJM19970522336210610.1056/NEJM1997052233621069154770Open DOISearch in Google Scholar

2. Wang X, Lin P, Yao Q, Chen C. (2007) Development of Small-Diameter Vascular Grafts. World J Surg. 31, 682–689. DOI: 10.1007/s00268-006-0731-z10.1007/s00268-006-0731-z17345123Open DOISearch in Google Scholar

3. Tamura N, Nakamura T, Terai H, et al. (2003). A new acellular vascular prosthesis as a scaffold for host tissue regeneration. Int J Artif Organs. 26(9), 783–792.14655858Search in Google Scholar

4. Jun HW, Taite LJ, West JL. (2005). Nitric oxide-producing polyurethanes. Biomacromolecules. 6(2), 838–844. DOI: 10.1021/bm049419y10.1021/bm049419y15762649Open DOISearch in Google Scholar

5. Fleser PS, Nuthakki VK, Malinzak LE, et al. (2004). Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg. 40(4), 803–811. DOI:10.1016/j. jvs.2004.07.00710.1016/j.jvs.2004.07.00715472611Open DOISearch in Google Scholar

6. Baguneid MS, Seifalian AM, Salacinski HJ, Murray D, Hamilton G, Walker MG.(2006). Tissue engineering of blood vessels. Br J Surg. 93(3), 282–290. DOI: 10.1002/bjs.525610.1002/bjs.525616498591Open DOISearch in Google Scholar

7. Boccafoschi F, Habermehl J, Vesentini S, Mantovani D. (2005). Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials. 26(35), 7410–7417. DOI: 10.1016/j.biomaterials.2005.05.05210.1016/j.biomaterials.2005.05.05215998538Open DOISearch in Google Scholar

8. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ. (2008). Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 29(19), 2891–2898. DOI: 10.1016/j.bio-materials.2008.03.032.Search in Google Scholar

9. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. (2005). Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 72(1), 156–165. DOI: 10.1002/jbm.b.3012810.1002/jbm.b.3012815389493Open DOISearch in Google Scholar

10. He W, Ma Z, Teo WE, Dong YX, Robless PA, Lim TC, et al. (2009). Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. J Biomed Mater Res A. 90(1), 205–216. DOI: 10.1002/jbm.a.3208110.1002/jbm.a.3208118491396Search in Google Scholar

11. Kuppan P, Sethuraman S, Krishnan UM.(2013). PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: optimization, characterization and cell-matrix interactions. J Biomed Nanotechnol. 9(1-16),1540-1555. DOI:10.1166/jbn.2013.165310.1166/jbn.2013.165323980502Open DOISearch in Google Scholar

12. Nam J, Huang Y, Agarwal S, Lannutti J. (2007). Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 13(9), 2249–2257. DOI: 10.1089/ten.2006.030610.1089/ten.2006.0306494898717536926Open DOISearch in Google Scholar

13. Browning MB, Dempsey D, Guiza V, Becerra S, Rivera J, Russell B, et al. (2012). Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8(3), 1010–1021. doi: 10.1016/j.actbio.2011.11.01510.1016/j.actbio.2011.11.015Open DOISearch in Google Scholar

14. Ratcliffe A. (2000). Tissue engineering of vascular grafts. Matrix Biol. 19(4),353–357. DOI: 10.1016/S0945-053X(00)00080-910.1016/S0945-053X(00)00080-9Open DOISearch in Google Scholar

15. Stegemann JP, Kaszuba SN, Rowe SL. (2007). Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13(11), 2601–2613. DOI:10.1089/ten.2007.019610.1089/ten.2007.0196Open DOISearch in Google Scholar

16. Bouten CVC, Dankers PYW, Driessen-Mol A, Pedron S, Brizard AMA, Baaijens FPT. (2011). Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev. 63(4-5), 221–241. DOI: 10.1016/j.addr.2011.01.00710.1016/j.addr.2011.01.007Open DOISearch in Google Scholar

17. Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Ng MKC, Weiss AS. (2011). A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 7(1), 295–303. DOI: 10.1016/j.actbio.2010.07.02210.1016/j.actbio.2010.07.022Open DOISearch in Google Scholar

18. McKenna KA, Hinds MT, Sarao RC, Wu P-C, Maslen CL, Glanville RW, et al. (2012). Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater. 8(1), 225–233. DOI: 10.1016/j.actbio.2011.08.00110.1016/j.actbio.2011.08.001Open DOISearch in Google Scholar

19. Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. (2004). A review of the literature. Eur J Vasc Endovasc Surg. 27(4), 357–362. DOI: 10.1016/j.ejvs.2003.12.02710.1016/j.ejvs.2003.12.027Open DOISearch in Google Scholar

20. Greenwald SE, Berry CL. (2000). Improving vascular grafts: the importance of mechanical and haemo-dynamic properties. J Pathol. 190(3), 292–299. DOI: 10.1002/(SICI)1096-9896(200002)190:3<292::AID-PATH528>3.0.CO;2-S10.1002/(SICI)1096-9896(200002)190:3<292::AID-PATH528>3.0.CO;2-SOpen DOISearch in Google Scholar

21. Seal BL, Otero TC and Panitch A. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering R-Reports. 34(4-5), 147-230. DOI: 10.1016/S0927-796X(01)00035-310.1016/S0927-796X(01)00035-3Open DOISearch in Google Scholar

22. Kwon IK, Kidoaki S, Matsuda T. (2005). Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 26(18), 3929-3939. DOI: 10.1016/j.biomaterials.2004.10.00710.1016/j.biomaterials.2004.10.007Open DOISearch in Google Scholar

23. Barbarisi M, Marino G, Armenia E, Vincenzo Q, Rosso F, Porcelli M, Barbarisi A. (2015). Use of polycaprolac-tone (PCL) as scaffolds for the regeneration of nerve tissue. J Biomed Mater Res A. 103(5), 1755-1760. DOI: 10.1002/jbm.a.3531810.1002/jbm.a.35318Open DOISearch in Google Scholar

24. Catto V, Farè S, Freddi G, and Tanzi MC. (2014). Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration. ISRN Vascular Medicine, 2014, Article ID 923030, 27 pages. DOI:10.1155/2014/92303010.1155/2014/923030Search in Google Scholar

25. Couet F, Rajan N, and Mantovani D. (2007). Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromolecular Bioscience. 7(5), 701–718. DOI: 10.1002/mabi.20070000210.1002/mabi.200700002Open DOISearch in Google Scholar

26. Pankajakshan D and Agrawal DK. (2010). Scaffolds in tissue engineering of blood vessels. Canadian Journal of Physiology and Pharmacology. 88(9), 855–873. DOI: 10.1139/y10-07310.1139/Y10-073Open DOISearch in Google Scholar

27. Lee SJ, Liu J, SOh SH, Soker S, Atala A, and Yoo JJ. (2008). Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 29(19), 2891–2898. DOI:10.1016/j.biomaterials.2008.03.03210.1016/j.biomaterials.2008.03.032Open DOISearch in Google Scholar

28. de Valence S, Tille JC, Mugnai D et al. (2012a). Long termperformance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Bio-materials. 33(1), 38–47. DOI: 10.1016/j.biomaterials.2011.09.02410.1016/j.biomaterials.2011.09.024Open DOISearch in Google Scholar

29. Watanabe M, Shin’oka T, Tohyama S, et al. (2001). Tissue-engineered vascular autograft: Inferior vena cava replacement in a dog model. Tissue Eng. 7(4), 429–439. DOI:10.1089/1076327015243648110.1089/10763270152436481Open DOISearch in Google Scholar

30. Shinoka T, Shum-Tim D, Ma PX, et al. (1998). Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 115(3), 536–546. DOI: 10.1016/S0022-5223(98)70315-010.1016/S0022-5223(98)70315-0Open DOISearch in Google Scholar

31. Nair LS, Laurencin CT. (2007). Biodegradable polymers as biomaterials. Prog Polym Sci. 32(8–9), 762–798. DOI: 10.1016/j.progpolymsci.2007.05.01710.1016/j.progpolymsci.2007.05.017Open DOISearch in Google Scholar

32. McClure MJ, Sell SA, Ayres CE, Simpson DG, Bowlin GL. (2009). Electrospinning-aligned and random polydioxanone–polycaprolactone – silk fibroin-blended scaffolds: geometry for a vascular matrix. Biomed Mater. 4(5), 055010. DOI: 10.1088/1748-6041/4/5/05501019815970Search in Google Scholar

33. de Valence S, Tille JC, Giliberto JP et al. (2012b). Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 8(11), 3914–3920. DOI: 10.1016/j.actbio.2012.06.03510.1016/j.actbio.2012.06.03522771455Open DOISearch in Google Scholar

34. de Valence S, Tille JC, Mugnai D et al. (2012c). Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Bio-materials. 33(1), 38–47. DOI: 10.1016/j.biomaterials.2011.09.02410.1016/j.biomaterials.2011.09.02421940044Open DOISearch in Google Scholar

35. Recum AF, Shannon CE, Cannon CE et al. (1996). Surface roughness, porosity, and texture as modifiers of cellular adhesion. Tissue Eng. 2(4), 241–253. DOI: 10.1089/ten.1996.2.2411987795610.1089/ten.1996.2.24119877956Search in Google Scholar

36. Schmidt, D, Asmis LM, Odermatt B et al. (2006). Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg. 82(4), 1465-1471. DOI: 10.1016/j.athoracsur.2006.05.06610.1016/j.athoracsur.2006.05.0661699695516996955Open DOISearch in Google Scholar

37. Hučko B. (2010). Experimental measurement of arterial mechanical properties. Proc. 11th Pan- American Congr Appl Mech Brazil. January 04-08.Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other