Otwarty dostęp

Diabetes Mellitus Directs NKT Cells Toward Type 2 and Regulatory Phenotype / Diabetes Melitus Usmerava Diferencijaciju NKT Celija U Pravcu Tip 2 I Regulatornog Fenotipa


Zacytuj

1. Shaw JE, Sicree RA, Zimmet PZ. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 87(1), 4-14.10.1016/j.diabres.2009.10.00719896746Search in Google Scholar

2. American diabetes association. (2008). Diagnosis and Classification of Diabetes Mellitus. Diabetes care 31(1), 55-60.10.2337/dc08-S05518165338Search in Google Scholar

3. Ceriello A. (2000). Oxidative stress and glycemic regulation. Metabolism. 49(2, Suppl 1):27-29.Search in Google Scholar

4. Baynes JW, Thorpe SR. (1999). Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 48:1-9.Search in Google Scholar

5. Maritim AC, Sanders RA, and Watkins JB III. (2003). Diabetes, Oxidative Stress, and Antioxidants: A Review. J biochem molecular toxicology. 17(1), 24-38.10.1002/jbt.1005812616644Search in Google Scholar

6. Vincent AM, Russell JW, Low P, Feldman EL. (2004). Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 25(4), 612-28.10.1210/er.2003-001915294884Search in Google Scholar

7. Geerlings S, Hoepelman A. (1999). Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 26(3-4), 259-65.10.1111/j.1574-695X.1999.tb01397.x10575137Search in Google Scholar

8. Abbas A, Lichtman A, Pillai S Cellular and molecular immunology, 8editionSearch in Google Scholar

9. Xiu F, Stanojcic M, Diao L, Jeschke M. (2014). Stress hyperglycemia, insulin treatment, and innate immune cells. Int J Endocrinol. 2014:486403. doi: 10.1155/2014/486403.10.1155/2014/486403403465324899891Search in Google Scholar

10. Berrou J, Fougeray S, Venot M, Chardiny V, Gautier JF, Dulphy N, Toubert A, Peraldi MN. (2013). Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes Plos One. 8(4):e62418. doi: 10.1371/journal.pone.0062418.10.1371/journal.pone.0062418363619423638076Search in Google Scholar

11. Qin H, Lee IF, Panagiotopoulos C, Wang X, Chu AD, Utz PJ, Priatel JJ, Tan R. (2011). Natural killer cells from children with type 1 diabetes have defects in NKG2D-dependent function and signaling. Diabetes. 60(3), 857-66.10.2337/db09-1706304684621270236Search in Google Scholar

12. Slauenwhite D, Johnston B. (2015). Regulation of NKT cell localization in homeostasis and infection. Frontiers in Immunology 6:255. doi: 10.3389/fimmu.2015.00255.10.3389/fimmu.2015.00255444531026074921Search in Google Scholar

13. Kumar V, Delovitch TL. (2014). Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology. 142(3), 321-36.10.1111/imm.12247408094824428389Search in Google Scholar

14. Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey DI. (2007). IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol. 178(5), 2827-34.10.4049/jimmunol.178.5.2827Search in Google Scholar

15. Marrero I, Ware R, Kumar V. (2015). Type II NKT cells in inflammation, autoimmunity, microbial immunity, and cancer. Front Immunol. 17;6:316. doi: 10.3389/ fimmu.2015.00316.Search in Google Scholar

16. Godfrey DI, Stankovic S, Baxter AG. (2010). Raising the NKT cell family. Nat Immunol. 11(3), 197-206.10.1038/ni.1841Search in Google Scholar

17. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem. 244(22), 6056-6063.Search in Google Scholar

18. Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton, New York, pp 105-106Search in Google Scholar

19. Misra HP, Fridovich I. (1972). The role of superoxideanion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 247, 3170-3175.10.1016/S0021-9258(19)45228-9Search in Google Scholar

20. Jovanovic I, Radosavljevic G, Milovanovic M, Martinova K, Pejnovic N, Arsenijevic N, Lukic M. (2012). Suppressed innate immune response against mammary carcinoma in balb/c mice. Ser J Exp Clin Res. 13 (2), 55-61.Search in Google Scholar

21. Choi SW, Benzie IF, Ma SW, Strain JJ, Hannigan BM. (2008). Acute hyperglycemia and oxidative stress: direct cause and effect? Free Radic Biol Med. 44(7), 1217-31.Search in Google Scholar

22. Jakus V. (2000). The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratisl Lek Listy. 101(10), 541-51.Search in Google Scholar

23. Verhasselt V, Goldman M, Willems F. (1998). Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur J Immunol. 28(11), 3886-90.10.1002/(SICI)1521-4141(199811)28:11<3886::AID-IMMU3886>3.0.CO;2-MSearch in Google Scholar

24. Matés JM. (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 153(1-3), 83-104.10.1016/S0300-483X(00)00306-1Search in Google Scholar

25. Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho YS, Ha H. (2012). Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes. 61(3), 728-38.10.2337/db11-0584Search in Google Scholar

26. Fujita H, Fujishima H, Chida S, Takahashi K, Qi Z, Kanetsuna Y, Breyer MD, Harris RC, Yamada Y, Takahashi T. (2009). Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol. 20(6), 1303-13.10.1681/ASN.2008080844Search in Google Scholar

27. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. (2002). Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23(5), 599-622.10.1210/er.2001-0039Search in Google Scholar

28. Robertson FC, Berzofsky JA, Terabe M. (2014). NKT cell networks in the regulation of tumor immunity. Front Immunol. 5:543. doi: 10.3389/fimmu.2014.00543.10.3389/fimmu.2014.00543Search in Google Scholar

29. Girardi E, Maricic I, Wang J, Mac TT, Iyer P, Kumar V, Zajonc DM. (2012). Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat Immunol. 13(9), 851-6.10.1038/ni.2371Search in Google Scholar

30. Terabe M, Berzofsky JA. (2007). NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol. 28(11), 491-6.10.1016/j.it.2007.05.008Search in Google Scholar

31. Sakuishi K, Oki S, Araki M, Porcelli SA, Miyake S, Yamamura T. (2007). Invariant NKT cells biased for IL-5 production act as crucial regulators of inflammation. J Immunol. 179(6), 3452-62.10.4049/jimmunol.179.6.3452Search in Google Scholar

32. Constantinides M, Bendelac A. (2013). Trancriptional regulation of the NKT cell lineage. Curr Opin Immunol. 25(2), 161-167.10.1016/j.coi.2013.01.003Search in Google Scholar

33. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, Berzins SP, Smyth MJ, Godfrey DI. (2008). Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A. 105(32), 11287-92.10.1073/pnas.0801631105Search in Google Scholar

34. Hadad U, Thauland T, Butte M, Porgador A, Krams S. (2014). NKp46 modulates NK immune synapse function (INC6P.346). The Journal of Immunology. 192 (1 Supplement) 121.13Search in Google Scholar

35. Yu J, Mitsui T, Wei M, Mao H, Butchar JP, Shah MV, Zhang J, Mishra A, Alvarez-Breckenridge C, Liu X, Liu S, Yokohama A, Trotta R, Marcucci G Jr, Benson DM, Loughran TP Jr, Tridandapani S, Caligiuri MA. (2011). NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J Clin Invest. 121(4):1456-70.Search in Google Scholar

36. Jovanovic I, Radosavljevic G, Mitrovic M, Lisnic Juranic V, McKenzie ANJ, Arsenijevic N, Jonjic S, Lukic ML. (2011). ST2 Deletion Enhances Innate and Acquired Immunity to Murine Mammary Carcinoma. Eur J Immunol. 41: 1902-1912.Search in Google Scholar

37. Shimizu K, Sato Y, Shinga J, Watanabe T, Endo T, Asakura M, Yamasaki S, Kawahara K, Kinjo Y, Kitamura H, Watarai H, Ishii Y, Tsuji M, Taniguchi M, Ohara O, Fujii S. (2014). KLRG+ invariant natural killer T cells are long-lived effectors. Proc Natl Acad Sci U S A. 111(34), 12474-9.10.1073/pnas.1406240111Search in Google Scholar

38. Terabe M, Park JM, Berzofsky JA. (2004). Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother. 53(2), 79-85.10.1007/s00262-003-0445-0Search in Google Scholar

39. Oki S, Chiba A, Yamamura T, and Miyake S. (2004). The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest. 113(11), 1631-1640.10.1172/JCI200420862Search in Google Scholar

40. Usui T, Nishikomori R, Kitani A, Strober W. (2003). GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity._ 18(3), 415-28.10.1016/S1074-7613(03)00057-8Search in Google Scholar

41. Onishi R, Gaffen S. (2010). Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 129(3), 311-321.10.1111/j.1365-2567.2009.03240.x282667620409152Search in Google Scholar

42. Gaffen S. (2008). An overview of IL-17 function and signaling. Cytokine. 43(3), 402-407.10.1016/j.cyto.2008.07.017258244618701318Search in Google Scholar

43. Terabe M, Berzofsky JA. (2008). The role of NKT cells in tumor immunity. Adv Cancer Res. 101:277-348.Search in Google Scholar

44. Tamada K, Harada M, Abe K, Li T, Tada H, Onoe Y, Nomoto K. (1997). Immunosuppressive activity of cloned natural killer (NK1.1+) T cells established from murine tumor-infiltrating lymphocytes. J Immunol. 158(10), 4846-54.Search in Google Scholar

45. Terabe M, Matsui S, Park JM, Mamura M, Noben- Trauth N, Donaldson DD, Chen W,Wahl SM,Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA. (2003).Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocytemediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 198(11), 1741-52.10.1084/jem.20022227219413314657224Search in Google Scholar

46. Pang Y, Gara SK, Achyut BR, Li Z, Yan HH, Day CP, Weiss JM, Trinchieri G, Morris JC, Yang L. (2013). TGF-β signaling in myeloid cells is required for tumor metastasis. Cancer Discov. 3(8), 936-51. 10.1158/2159-8290.CD-12-0527467877123661553Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other