Otwarty dostęp

Molecular dynamics simulation of aluminium melting

   | 18 sie 2016

Zacytuj

[1] Ercolessi, F., Adams, J. B. (1994): Interatomic potentials from first-principles calculations: the force-matching method. Europhysics Letters, 26, pp. 583–588.10.1209/0295-5075/26/8/005Search in Google Scholar

[2] Frenkel, D., Smit, B. (2002): Understanding Molecular Simulation. San Diego: Academic Press; pp. 545–558.Search in Google Scholar

[3] Bombač, D., Kugler, G. (2015): Influence of diffusion asymmetry on kinetic pathways in binary Fe-Cu alloy: a kinetic Monte Carlo study. Journal of Materials Engineering and Performance, 24, pp. 2382–2389.10.1007/s11665-015-1493-2Search in Google Scholar

[4] Heffelfinger, G. S., Swol, F. (1994): Diffusion in Lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD). Journal of Chemical Physics, 100, pp. 7548–7552.10.1063/1.466849Search in Google Scholar

[5] Tulley, C. T., Gilmer, G. H. (1979): Molecular dynamics of surface diffusion. I. The motion of adatoms and clusters. Journal of Chemical Physics, 71, pp. 7968–7972.Search in Google Scholar

[6] Ivanov, V. A., Mishin, Y. (2008): Dynamics of grain boundary motion coupled to shear deformation: an analytical model and its verification by molecular dynamics. Physical Review B, 78, 064106.10.1103/PhysRevB.78.064106Search in Google Scholar

[7] Schönfelder, B., Wolf, D., Phillpot, S. R., Furtkamp, M. (1997): Molecular-dynamics method for the simulation of grain-boundary migration. Interface Science, 5, pp. 245–262.10.1023/A:1008663804495Search in Google Scholar

[8] Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., Gleiter, H. (2002): Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Materials, 1, pp. 45–49.10.1038/nmat700Search in Google Scholar

[9] Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., Gleiter, H. (2001): Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Materialia, 49, pp. 2713–2722.10.1016/S1359-6454(01)00167-7Search in Google Scholar

[10] Alavi, S., Thompson, D. L. (2006): Molecular dynamics simulations of the melting of aluminum nanoparticles. Journal of Physical Chemistry A, 110, pp. 1518–1523.10.1021/jp053318s16435812Search in Google Scholar

[11] Puri, P., Yang, V. (2007): Effect of particle size on melting of aluminum at nano scales. Journal of Physical Chemistry C, 111, pp. 11776–11783.10.1021/jp0724774Search in Google Scholar

[12] Andersen, H. C. (1980): Molecular dynamics simulation at constant pressure and/or temperature. Journal of Physical Chemistry, 72, pp. 2384–2393.10.1063/1.439486Search in Google Scholar

[13] Davey, W. P. (1925): Precision measurements of the lattice constants of twelve common metals. Physical Review, 25, pp. 753–761.10.1103/PhysRev.25.753Search in Google Scholar

[14] Landau, L. D., Lifshitz, E. M. (1980): Statistical Physics. London: Pergamon; 87 p.Search in Google Scholar

[15] Allen, M. P., Tildesley, D. J. (1989): Computer Simulation of Liquids. Oxford: Oxford Science; pp. 73–75.10.1063/1.2810937Search in Google Scholar

[16] Jin, Z. H., Lu, K. (1998): Melting of surface-free bulk single crystals. Philosophical Magazine Letters, 78, pp. 29–35.10.1080/095008398178228Search in Google Scholar

[17] Phillpot, S. R., Lutsko, J. F., Wolf, D., Yip, S. (1989): Molecular-dynamics study of lattice-defect-nucleated melting in silicon. Physical Review B, 40, pp. 2831–2840.10.1103/PhysRevB.40.2831Search in Google Scholar

[18] Mei, Q. S., Lu, K. (2007): Melting and superheating of crystalline solids: from bulk to nanocrystals. Progress in Materials Science, 52, pp. 1175–1262.10.1016/j.pmatsci.2007.01.001Search in Google Scholar

[19] Solhjoo, S., Simchi, A., Aashuri, H. (2012): Molecular dynamics simulation of melting, solidification and remelting processes of aluminum. Transactions of Mechanical Engineering, 36, pp. 13–23.Search in Google Scholar

[20] Sarkar, A., Barat, P., Mukherjee, P. (2006): Molecular dynamics simulation of rapid solidification of Aluminum under pressure. International Journal of Modern Physics B, 22, pp. 2781–2785.Search in Google Scholar