Otwarty dostęp

Estimation of cell response in fractionation radiotherapy using different methods derived from linear quadratic model


Zacytuj

1. Baskar R, Lee KA, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012; 9: 193-9.10.7150/ijms.3635Search in Google Scholar

2. Begg CA, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 2011; 11: 239-53.10.1038/nrc3007Search in Google Scholar

3. Stavrev P, Hristov D. Prostate IMRT fractionation strategies: two-phase treatment versus simultaneous integrated boost. Radiol Oncol 2003; 37: 115-26.Search in Google Scholar

4. Chang SX, Cullip TJ, Deschesne KM. Intensity modulation delivery techniques: ‘step & shoot’ MLC auto-sequence versus the use of a modulator. Med Phys 2000; 27: 948-59.10.1118/1.598989Search in Google Scholar

5. Verhey LJ. Physical considerations in the use of intensity modulated radiotherapy to produce three-dimensional conformal dose distributions. J Jpn Soc Ther Radiol Oncol 2000; 12: 191-203.Search in Google Scholar

6. Jeraj M, Robar V. Multileaf collimator in radiotherapy. Radiol Oncol 2004;38: 235-40.Search in Google Scholar

7. Ling CC, Burman C, Chui CS, Kutcher GJ, Leibel SA, LoSasso T, et al. Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys1996; 35: 721-30.10.1016/0360-3016(96)00174-5Search in Google Scholar

8. Mu X, Löfroth P-O, Karlsson M, Zackrisson B. The effect of fraction time in intensity modulated radiotherapy: theoretical and experimental evaluation of an optimization problem. Radiother Oncol 2003; 68: 181-7.10.1016/S0167-8140(03)00165-8Search in Google Scholar

9. Keall PJ, Chang M, Benedict S, Thames H, Vedam SS, Lin P-S. Investigating the temporal effects of respiratory-gated and intensity-modulated radiotherapy treatment delivery on in vitro survival: an experimental and theoretical study. Int J Radiat Oncol Biol Phys 2008; 71: 1547-52.10.1016/j.ijrobp.2008.03.04718495369Search in Google Scholar

10. Fowler JF, Welsh JS, Howard SP. Loss of biological effect in prolonged fraction delivery. Int J Radiat Oncol Biol Phys 2004; 59: 242-9.10.1016/j.ijrobp.2004.01.00415093921Search in Google Scholar

11. Zheng XK, Chen LH, Wang WJ, Ye F, Liu JB, Li QS, et al. Impact of prolonged fraction delivery times simulating IMRT on cultured nasopharyngeal carcinoma cell killing. Int J Radiat Oncol Biol Phys 2010, 78: 1541-7.10.1016/j.ijrobp.2010.07.00521092834Search in Google Scholar

12. Paganetti H. Changes in tumor cell response due to prolonged dose delivery times in fractionated radiation therapy. Int J Radiat Oncol Biol Phys 2005; 63: 892-900.10.1016/j.ijrobp.2005.07.95316199319Search in Google Scholar

13. Wang X, Xiong XP, Lu J, Zhu GP, He SQ, Hu CS, et al. The in vivo study on the radiobiologic effect of prolonged delivery time to tumor control in C57BL mice implanted with Lewis lung cancer. Radiat Oncol 2011; 6: 4.10.1186/1748-717X-6-4302493521226899Search in Google Scholar

14. Wang JZ, Li XA, D’souza WD, Stewart RD. Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT). Int J Radiat Oncol Biol Phys 2003; 57: 543-52.10.1016/S0360-3016(03)00499-1Search in Google Scholar

15. Shibamoto Y, Masato I, Sugie C, Ogino H, Hara M. Recovery from sublethal damage during intermittent exposures in cultured tumor cells: implications for dose modification in radiosurgery and IMRT. Int J Radiat Oncol Biol Phys 2004; 59: 1484-90.10.1016/j.ijrobp.2004.04.03915275736Search in Google Scholar

16. Ling CC, Gerweck LE, Zaider M, Yorke E. Dose-rate effects in external beam radiotherapy redux. Radiother Oncol 2010; 95: 261-8.10.1016/j.radonc.2010.03.01420363041Search in Google Scholar

17. Thames HD. An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med 1985; 47: 319-39.10.1080/095530085145504613872284Search in Google Scholar

18. Nilsson P, Thames HD, Joiner MC. A generalized formulation of the ‘incomplete repair’ model for cell survival and tissue response to fractionated low dose-rate irradiation. Int J Radiat Biol 1990; 57: 127-42.10.1080/095530090145504011967284Search in Google Scholar

19. Rourke SFCO, Mcaneney H, Hillen T. Linear quadratic and tumor control probability modeling in external beam radiotherapy. J Math Biol 2009; 58: 799-817.10.1007/s00285-008-0222-y18825382Search in Google Scholar

20. Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 2008; 18: 234-9.10.1016/j.semradonc.2008.04.004275007818725109Search in Google Scholar

21. Jones L, Hoban P, Metcalfe H. The use of the linear quadratic model in radiotherapy: a review. Australas Phys Eng Sci Med 2001; 24: 132-46.10.1007/BF0317835511764395Search in Google Scholar

22. Price P, McMillan TJ. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res 1990; 50: 1392-6.Search in Google Scholar

23. Buch K, Peters T, Nawroth T, Sanger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT assay – a comparative study. Radiat Oncol 2012; 7: 1.10.1186/1748-717X-7-1327445222214341Search in Google Scholar

24. Sieuwerts AM, Klijn JGM, Peters HA, Foekens JA. The MTT Tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Eur J Clin Chem Clin Biochem 1995; 33: 813-23.10.1515/cclm.1995.33.11.8138620058Search in Google Scholar

25. Nikzad S, Hashemi B, Hasan Z S, Mozdarani H. The cell survival of F10B16 melanoma and 4T1 breast adenocarcinoma irradiated to gamma radiation using the MTT assay based on two different calculation methods. J Biomed Phys Eng 2013; 3: 29-36.Search in Google Scholar

26. Nikzad S, Hashemi B. MTT assay instead of the clonogenic assay in measuring the response of cells to ionizing radiation. J Radiobiol 2014; 1: 3-8.Search in Google Scholar

27. Shanei A, Baradaran-Ghahfarokhi M. Evaluation of testicular dose and associated risk from common pelvis radiation therapy in Iran. Physica Medica 2014; 30: 867-70.10.1016/j.ejmp.2014.06.038Search in Google Scholar

28. Cherubini R, De Nadal V, Gerardi S, Guryev D. Status report of a systematic investigation on low dose ionizing radiation effects in mammalian cells. Nuoro Cimento C 2008; 1: 57-67.Search in Google Scholar

29. Smith LG, Miller RC, Richard SM, Brenner DJ, Hall EJ, Phil D. Investigation of hypersensitivity to fractionated low dose radiation exposure. Int J Radiat Oncol Biol Phys 1999; 45: 187-91.10.1016/S0360-3016(99)00143-1Search in Google Scholar

30. Marples B, Joiner MC. The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res 1993; 133: 41-51.10.2307/3578255Search in Google Scholar

31. Ling CC, Gerweck LE, Zaider M, Yorke E. Dose-rate effects in external beam radiotherapy redux. Radiother Oncol 2010; 95: 261-8.10.1016/j.radonc.2010.03.014Search in Google Scholar

32. Ling CC, Spiro IJ, Mitchell J, Stickler R. The variation of OER with dose rate. Int J Radiat Oncol Biol Phys 1985; 11: 1367-73.10.1016/0360-3016(85)90253-6Search in Google Scholar

33. Michaels HB, Epp ER, Ling CC, Peterson EC. Oxygen sensitization of CHO cells at ultrahigh dose rates: prelude to oxygen diffusion studies. Radiat Res 1978; 76: 510-21.10.2307/3574800Search in Google Scholar

eISSN:
1581-3207
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology