Zacytuj

Amagai, Y., Martinek, P., Watanabe, N., Kuboyama, T. (2014). Microsatellite mapping of genes for branched spike and soft glumes in Triticum monococcum L. Genet. Resour. Crop Ev., 61 (2), 465–471.10.1007/s10722-013-0050-9Search in Google Scholar

Anonymous (2015). FAOSTAT.FAO, Rome, Italy. Available at: http://faostat.fao.org (accessed 15 August 2016).Search in Google Scholar

Antonyuk, M. Z., Prokopyk, D. O., Martynenko, V. S., Ternovska, T. K. (2012). Identification of the genes promoting awnedness in the Triticum aestivum/Aegilops umbellulata introgressive line. Cytol. Genet., 46 (3), 136–143.10.3103/S0095452712030024Search in Google Scholar

Ariel, F. D., Manavella, P. A., Dezar, C. A., Chan, R. L. (2007). The true story of the HD-Zip family. Trends Plant Sci., 12 (9), 419–426.10.1016/j.tplants.2007.08.00317698401Search in Google Scholar

Boden, S. A., Cavanagh, C., Cullis, B. R., Ramm, K., Greenwood, J., Finnegan, E. J., Trevaskis, B., Swain, S. M. (2015). Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat. Plants, 1, doi: 10.1038/nplants.2014.1610.1038/nplants.2014.1627246757Search in Google Scholar

Chen, Q. F., Yen, C., Yang, J. L. (1998). Chromosome location of the gene for the hulled character in the Tibetan weedrace of common wheat. Genet. Resour. Crop Ev., 45, 407–410.10.1023/A:1008635208146Search in Google Scholar

Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025.10.1126/science.1088060512770812893888Search in Google Scholar

Chuck, G., Meeley, R., Irish, E., Sakai, H., Hake, S. (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet., 39 (12), 1517–1521.10.1038/ng.2007.2018026103Search in Google Scholar

Dobrovolskaya, O., Martinek, P., Voylokov, A. V., Korzun, V., Roder, M. S., Borner, A. (2009). Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor. Appl. Genet., 119 (5), 867–874.10.1007/s00122-009-1095-119568730Search in Google Scholar

Dobrovolskaya, O., Pont, C., Sibout, R., Martinek, P., Badaeva, E., Murat, F., Chosson, A., Watanabe, N., Prat, E., Gautier, N., Gautier, V., Poncet, C., Orlov. Y. L., Krasnikov, A. A., Berges, H., Salina, E., Laikova, L., Salse, J. (2015). FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol., 167 (1), 189–99.10.1104/pp.114.250043Search in Google Scholar

Doebley, J. F., Gaut, B. S., Smith, B. D. (2006). The molecular genetics of crop domestication. Cell, 127 (7), 1309–1321.10.1016/j.cell.2006.12.00617190597Search in Google Scholar

Dorofeev, V.F., Korovina, O. N. (1979). Wheat. Flora of Cultivated Plants, Vol. 1. [Дорофеев В. Ф., Коровина О. Н. Культурная флора СССР. Т. 1. Пшеница.] Kolos, Leningrad. 347 pp. (in Russian).Search in Google Scholar

Faris, J. D., Gill, B. S. (2002). Genomic targeting and high-resolution mapping of the domestication gene. Genome, 45, 706–718.10.1139/g02-03612175074Search in Google Scholar

Faris, J. D., Fellers, J. P., Brooks, S. A., Gill, B. S. (2003). A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 164 (1), 311–321.10.1093/genetics/164.1.311146255812750342Search in Google Scholar

Franckowiack, J. D., Konishi, T. (1997). Naked caryopsis. Barley Genetics Newsletter, 26, 51–52.Search in Google Scholar

Gepts, P. (2004). Crop domestication as a long-term Selection Experiment. Plant Breeding, 24 (2), 1–44.Search in Google Scholar

Gill, B. S., Appels, R., Botha-Oberholster, A. M., Buell, C. R., Bennetzen, J. L., Chalhoub, B., Chumley, F., Dvorak, J., Iwanaga, M., Keller, B., Li, W., McCombie, W. R., Ogihara, Y., Quetier, F., Sasaki, T. (2004). A workshop report on wheat genome sequencing: International genome research on wheat consortium. Genetics, 168 (2), 1087–1096.10.1534/genetics.104.034769144881815514080Search in Google Scholar

Glémin, S., Bataillon, T. (2009). A comparative view of the evolution of grasses under domestication: Tansley review. New Phytol., 183 (2), 273–290.10.1111/j.1469-8137.2009.02884.x19515223Search in Google Scholar

Goncharov, N. P. (1997). Comparative genetic study of tetraploid forms of common wheat without D genome. Russ. J. Genet., 33, 549–552.Search in Google Scholar

Goncharov, N. P., Mitina, R. L., Anfilova, N. A. (2003). Inheritance of awnlessness in tetraploid wheat species. Russ. J. Genet., 39 (4), 463–466.10.1023/A:1023326202320Search in Google Scholar

Goncharov, N. P., Gaidalenok, R. F. (2005). Localization of genes controlling spherical grain and compact ear in Triticum antiquorum Heer ex Udacz. Russ. J. Genet., 41 (11), 1262–1267.10.1007/s11177-005-0227-1Search in Google Scholar

Goncharov, N. P., Bannikova, S. V., Kawahara, T. (2007a). Wheat artificial amphiploids involving the Triticum timopheevii genome: Their studies, preservation and reproduction. Genet. Resour. Crop Ev., 54 (7), 1507–1516.10.1007/s10722-006-9141-1Search in Google Scholar

Goncharov, N. P., Kondratenko, E. Y., Bannikova, S. V, Konovalov, A. A., Golovnina, K. A. (2007b). Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession. Russ. J. Genet., 43 (11), 1248–1256.10.1134/S1022795407110075Search in Google Scholar

Goncharov, N. P. (2011). Genus Triticum L. taxonomy: The present and the future. Plant Syst. Evol., 295 (1), 1–11.Search in Google Scholar

Goncharov, N. P. (2012) Comparative Genetics of Wheats and Their Related Species. [Гончаров Н. П. Сравнительная генетика пшениц и их сородичей.] GEO, Novosibirsk. 523 pp. (in Russian).Search in Google Scholar

Gross, B. L., Olsen, K. M. (2010). Genetic perspectives on crop domestication. Trends Plant Sci., 15 (9), 529–537.10.1016/j.tplants.2010.05.008293924320541451Search in Google Scholar

Gu, X. Y., Kianian, S. F., Foley, M. E. (2004). Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics, 166 (3), 1503–1516.10.1534/genetics.166.3.1503147077115082564Search in Google Scholar

Hammer, K. (1984). Das Domestikationssyndrom. Die Kulturpflanze, 32 (1), 11–34.10.1007/BF02098682Search in Google Scholar

Haque, M. A., Takayama, A., Watanabe, N., Kuboyama, T. (2011) Cytological and genetic mapping of the gene for four-awned phenotype in Triticum carthlicum Nevski. Genet. Resour. Crop Evol.,58 (7), 1087–1093.10.1007/s10722-010-9644-7Search in Google Scholar

Houston, K., McKim, S. M., Comadran, J., Bonar, N., Druka, I., Uzrek, N., Cirillo, E., Guzy-Wrobelska, J., Collins, N. C., Halpin, C., Hansson, M., Dockter, C., Druka, A., Waugh, R. (2013). Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. P. Natl. Acad. Sci. USA, 110 (41), 16675–16680.10.1073/pnas.1311681110379938024065816Search in Google Scholar

Jantasuriyarat, C., Vales, M. I., Watson, C. J. W., Riera-Lizarazu, O. (2004). Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet., 108 (2), 261–273.10.1007/s00122-003-1432-813679977Search in Google Scholar

Johnson, E. B., Nalam, V. J., Zemetra, R. S., Riera-Lizarazu, O. (2008). Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica, 163 (2), 193–201.Search in Google Scholar

Kato, K., Miura, H., Sawada, S. (1999). QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor. Appl. Genet., 98, 472–477.10.1007/s001220051094Search in Google Scholar

Kerber, E. R., Rowland, G. G. (1974). Origin of the free threshing character in hexaploid wheat. Can. J. Genet. Cytol., 16 (1), 145–154.10.1139/g74-014Search in Google Scholar

Kimber, G., Feldman, M. (1987). Wild Wheat: An Introduction. College of Agriculture, University of Missouri-Columbia, Columbia, Mo. 146 pp.Search in Google Scholar

Kimber, G., Sears, E. R. (1987). Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne, E. G. (Ed.). Wheat and Wheat Improvement. 2nd edn. American Society of Agronomy, Madison, WI, pp. 154–164.10.2134/agronmonogr13.2ed.c6Search in Google Scholar

Klindworth, D. L., Williams, N. D., Joppa, L. R. (1990). Chromosomal location of genes for supernumerary spikelet in tetraploid wheat. Genome, 33 (4), 515–520.10.1139/g90-076Search in Google Scholar

Klindworth, D. L., Klindworth, M. M., Williams, N. D. (1997). Telosomic mapping of four genetic markers in durum wheat. J. Hered., 88 (3), 229–232.10.1093/oxfordjournals.jhered.a023093Search in Google Scholar

Komatsuda, T., Mano, Y. (2002). Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). Theor. Appl. Genet., 105 (1), 85–90.10.1007/s00122-001-0858-012582565Search in Google Scholar

Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T., Yano, M. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA, 104 (4), 1424–1429.10.1073/pnas.0608580104178311017220272Search in Google Scholar

Koppolu, R., Anwar, N., Sakuma, S., Tagiri, A., Lundqvist, U., Pourkheirandish, M., Rutten, T., Seiler, C., Himmelbach, A., Ariyadasa, R., Youssef, H. M., Stein, N., Sreenivasulu, N., Komatsuda, T., Schnurbusch, T. (2013). Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc. Natl. Acad. Sci. USA, 110 (32), 13198–203.10.1073/pnas.1221950110374084723878219Search in Google Scholar

Kosuge, K., Watanabe, N., Kuboyama, T., Melnik, V. M., Yanchenko, V. I., Rosova, M. A., Goncharov, N. P. (2008). Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica, 159 (3), 289–296.10.1007/s10681-007-9488-1Search in Google Scholar

Lebedeva, T. V., Rigin, B. V. (1994). Inheritance of some morphological traits, growth habit and powdery mildew resistance in cultivated einkorn Triticum monococcum L. Russ. J. Genet.,30, 1599–1604.Search in Google Scholar

Lenser, T., Theißen, G. (2013). Molecular mechanisms involved in convergent crop domestication. Trends in Plant Sci., 18 (12), 704–714.10.1016/j.tplants.2013.08.00724035234Search in Google Scholar

Lev-Yadun, S., Gopher, A., Abbo, S. (2000). The cradle of agriculture. Science, 288, 1602–1603.10.1126/science.288.5471.160210858140Search in Google Scholar

Li, W., Gill, B. S. (2006). Multiple genetic pathways for seed shattering in the grasses. Funct. Integr. Genom., 6 (4), 300–309.10.1007/s10142-005-0015-y16404644Search in Google Scholar

MacKey, J. (1954). Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas, 40, 65–180.Search in Google Scholar

Malinowski, E. (1914). Les hybrides du froment. Bull. del’Acad. Sci. Cracovie, Ser. B Sci. Naturalis, 3, 410–450.Search in Google Scholar

Maydup, M. L., Antonietta, M., Guiamet, J. J., Graciano, C., Lopez, J. R., Tambussi, E. A. (2010). The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crop. Res., 119 (1), 48–58.10.1016/j.fcr.2010.06.014Search in Google Scholar

Muller, K. J., Romano, N., Gerstner, O., Garcia-Maroto, F., Pozzi, C., Salamini, F., Rohde, W. (1995). The barley Hooded mutation caused by a duplication in homeobox gene intron. Nature, 374, 727–730.10.1038/374727a07715728Search in Google Scholar

Muramatsu, M. (1963). Dosage effect of the spelta gene q of hexaploid wheat. Genetics, 48, 469–482.10.1093/genetics/48.4.469121048617248158Search in Google Scholar

Nalam, V. J., Vales, M. I., Watson, C. J. W., Kianian, S. F., Riera-Lizarazu, O. (2006). Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor. Appl. Genet., 112 (2), 373–381.10.1007/s00122-005-0140-y16328232Search in Google Scholar

Pennell, A. L., Halloran, G. M. (1983). Inheritance of supernumerary spikelets in wheat. Euphytica, 32 (3), 767–776.10.1007/BF00042157Search in Google Scholar

Pourkheirandish, M., Wicker, T., Stein, N., Fujimura, T., Komatsuda, T. (2007). Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. Theor. Appl. Genet., 114 (8), 1357–1365.10.1007/s00122-007-0522-417375281Search in Google Scholar

Poursarebani, N., Seidensticker, T., Koppolu, R., Trautewig, C., Gawroński, P., Bini, F., Govind, G., Rutten, T., Sakuma, S., Tagiri, A., Wolde, G. M., Youssef, H. M., Battal, A., Ciannamea, S., Fusca, T., Nussbaumer, T., Pozzi, C., Borner, A., Lundqvist, U., Komatsuda, T., Salvi, S., Tuberosa, R., Uauy, C., Sreenivasulu, N., Rossini, L., Schnurbusch, T. (2015). The genetic basis of composite spike form in barley and “miracle-wheat.” Genetics, 201 (1), 155–165.10.1534/genetics.115.176628456626026156223Search in Google Scholar

Ramsay, L., Comadran, J., Druka, A., Marshall, D. F., Thomas, W. T. B., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., Hayes, P. M., Lundqvist, U., Franckowiak, J. D., Close, T. J., Muehlbauer, G. J., Waugh, R. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genet., 43 (2), 169–172.10.1038/ng.74521217754Search in Google Scholar

Rao, M. V. P. (1972). Mapping of the compactum gene C on chromosome 2D of wheat. Wheat. Inf. Serv., 35, 9.Search in Google Scholar

Rao, M. V. P. (1981). Telocentric mapping of the awn inhibitor gene Hd on chromosome 4B of common wheat. Cereal Res. Comm., 9, 335–337.Search in Google Scholar

Rebetzke, G. J., Bonnett, D. G., Reynolds, M. P. (2016). Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J. Exp. Bot., 67(9), 2573–2586.10.1093/jxb/erw081486101026976817Search in Google Scholar

Reynolds, M., Tuberosa, R. (2008). Translational research impacting on crop productivity in drought-prone environments. Curr. Opin. Plant Biol., 11 (2), 171–179.10.1016/j.pbi.2008.02.00518329330Search in Google Scholar

Rowland, G. G., Kerber, E. R. (1974). Telocentric mapping in hexaploid wheat of genes for leaf resistance and other characters derived from Aegilops squarrose. Can. J. Genet. Cytol., 16, 137–144.10.1139/g74-013Search in Google Scholar

Sakuma, S., Pourkheirandish, M., Matsumoto, T., Koba, T., Komatsuda, T. (2010). Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions. Funct. Integr. Genom., 10 (1), 123–133.10.1007/s10142-009-0134-y283477319707806Search in Google Scholar

Santi, L., Wang, Y., Stile, M. R., Berendzen, K., Wanke, D., Roig, C., Pozzi, C., Muller, K., Muller, J., Rohde, W., Salamini, F. (2003). The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J., 34 (6), 813–826.10.1046/j.1365-313X.2003.01767.xSearch in Google Scholar

Sears, E. R. (1947). The sphaerococcum gene in wheat. Genetics,32, 102–103.Search in Google Scholar

Sears, E. R. (1954). The aneuplolds of common wheat. Missouri Agr. Exp. Sta. Res. Bull., 572, 1–58.Search in Google Scholar

Sears, E. R. (1966). Chromosome mapping with the aid of telocentrics. Proc. 2nd International Wheat Geneties Symposium, Hereditas Suppl.,2, 370–381.Search in Google Scholar

Sessa, G., Carabelli, M., Ruberti, I., Lucchetti, S., Baima, S., Morelli, G. (1994). Identification of distinct families of HD-Zip proteins in Arabidopsis thaliana. In: G. Coruzzi, P. Puigdomčnech (eds.). Plant Molecular Biology: Molecular Genetic Analysis of Plant Development and Metabolism. Springer, Berlin, Heidelberg, pp. 411–426.10.1007/978-3-642-78852-9_39Search in Google Scholar

Simonetti, M. C., Bellomo, M. P., Laghetti, G., Perrino, P., Simeone, R., Blanco, A. (1999). Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet. Resour. Crop Ev., 46 (3), 267–271.10.1023/A:1008602009133Search in Google Scholar

Simons, K. J., Fellers, J. P., Trick, H. N., Zhang, Z., Tai, Y. S., Gill, B. S., Faris, J. D. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics, 172 (1), 547–555.10.1534/genetics.105.044727145618216172507Search in Google Scholar

Sood, S., Kuraparthy, V., Bai, G., Dhaliwal, H. S., Gill, B. S. (2007) Molecular mapping of soft glume (Sog) gene in diploid wheat. In: Abstracts of the Plant & Animal Genomes XV Conference, 13–17 January 2007, San Diego, CA, p. 282.Search in Google Scholar

Sood, S., Kuraparthy, V., Bai, G., Gill, B. S. (2009). The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor. Appl. Genet., 119 (2), 341–351.10.1007/s00122-009-1043-019421730Search in Google Scholar

Sormacheva, I., Golovnina, K., Vavilova, V., Kosuge, K., Watanabe, N., Blinov, A., Goncharov, N. P. (2015). Q gene variability in wheat species with different spike morphology. Genet. Resour. Crop Ev., 62 (6), 837–852.10.1007/s10722-014-0195-1Search in Google Scholar

Sweeney, M. T. (2006). Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell, 18 (2), 283–294.10.1105/tpc.105.038430135653916399804Search in Google Scholar

Tadesse, W., Amri, A., Ogbonnaya, F. C., Sanchez-Garcia, M., Sohail, Q., Baum, M. (2015). Wheat. In: Genetic and Genomic Resources for Grain Cereals Improvement. Academic Press, Oxford, pp. 81–124.Search in Google Scholar

Taenzler, B., Esposti, R. F., Vaccino, P., Brandolini, A., Effgen, S., Heun, M., Schafer-Pregl, R., Borghi, B., Salamini, F. (2002). Molecular linkage map of Einkorn wheat: Mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet. Res., 80 (2), 131–143.10.1017/S001667230200575X12534216Search in Google Scholar

Takahashi, R., Hayashi, J. (1964). Linkage study of two complementary genes for brittle rachis in barley. Berichte des Ohara Instituts, 12, 99–105.Search in Google Scholar

Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S., Takeda, K. (2008). Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA, 105 (10), 4062–4067.10.1073/pnas.0711034105226881218316719Search in Google Scholar

Taketa, S., Kikuchi, S., Awayama, T., Yamamoto, S., Ichii, M., Kawasaki, S. (2004). Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor. Appl. Gen., 108, 1236–1242.10.1007/s00122-003-1560-114727032Search in Google Scholar

Taketa, S., Yuo, T., Yamashita, Y., Ozeki, M., Haruyama, N., Hidekazu, M., Kanamori, H., Matsumoto, T., Kakeda, K., Sato, K. (2013). Molecular mechanisms for covered vs. naked caryopsis in barley. In: Advance in Barley Sciences, Proceedings of 11th International Barley Genetics Symposium, Zhejiang, China, pp. 453–460.Search in Google Scholar

Unrau, J. (1950). The use of monosomes and nullisomes in cytogenetic studies of common wheat. Sci. Agri.,30, 66–89.Search in Google Scholar

Watanabe, N., Ikebata, N. (2000). The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica, 115 (3), 215–220.10.1023/A:1004066416900Search in Google Scholar

Watanabe, N., Sugiyama, K., Yamagishi, Y., Sakata, Y. (2002). Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas, 137, 180–185.10.1034/j.1601-5223.2002.01609.xSearch in Google Scholar

Watkins, A. E. (1930). Wheat species. J. Gen., 23, 173.Search in Google Scholar

Yu, S., Long, H., Deng, G., Pan, Z., Liang, J., Zeng, X., Tang, Y., Tashi, N., Yu, M. (2016). A single nucleotide polymorphism of nud converts the caryopsis type of barley (Hordeum vulgare L.). Plant Mol. Biol. Rep., 34 (1), 242–248.10.1007/s11105-015-0911-9Search in Google Scholar

Zhang, Z., Belcram, H., Magdelenat, G., Couloux, A., Samain, S., Gill, S., Rasmussena, J. B., Barbed, V., Faris, J. D., Huneau, C. (2011). Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc. Natl. Acad. Sci. USA, 108 (46), 18737–18742.10.1073/pnas.1110552108321914822042872Search in Google Scholar

eISSN:
1407-009X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
General Interest, Mathematics, General Mathematics