Otwarty dostęp

Amber Particles as Living Plant Cell Markers in Flow Cytometry / Dzintara Daļiņas Kā Dzīvu Augu Šūnu Marķieri Plūsmas Citometrijā


Zacytuj

Agarwal, L., Isar, J., Meghwanshi, G. K., Saxena, R. K. (2007. Influence of environmental and nutrition factors on succinic acid production and enzymes of reverse tricarboxylic acid cycle from Enterococcus flavescens. Enzyme Microbial Technol., 40, 629-63610.1016/j.enzmictec.2006.05.019Search in Google Scholar

Bargmann, B. O. R., Birnbaum, K. D. (2009). Positive fluorescent selection permits preside, rapid and in-depth overexpression analysis in plant protoplasts. Plant Physiol., 149, 1231-1239.10.1104/pp.108.133975264941419168642Search in Google Scholar

Barnabás, B. (2003). Protocol for producing doubled haploid plants from anther culture of wheat (Triticum aestivum L.). In: Maluszymski, M., Kasha, K. J., Forster, B. P., Szarejko I. (eds.). Doubled Haploid Production in Crop Plants. Kluwer Academic Publishers, Dordrecht, pp. 65-70.10.1007/978-94-017-1293-4_11Search in Google Scholar

Berestovsky, G. N., Ternovsky, V. I., Kataev, A. A. (2001). Through pore diameter in the cell wall of Chara coralline. J. Exper. Bot., 52, 1173-1177.10.1093/jexbot/52.359.1173Search in Google Scholar

Bouche, N., Falt A., Bouchez, D., M¸ller, S. G., Fromm, H., 2003. Mitochondrial succinic-semialdehyde dehydrogenase of the ã-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 100 (11), 6843-6848.10.1073/pnas.103753210016453412740438Search in Google Scholar

Chambers, E. (1728). Spirit of Amber. Cyclopaedia, p. 75.Search in Google Scholar

Chen, S. W., Xin, Q., Kong, W. X., Min, L., Li, J. F. (2003). Anxiolytic effect of succinic acid in mice. Life Sci., 73, 3257-3264.10.1016/j.lfs.2003.06.01714561530Search in Google Scholar

Davison, B. H., Parks, J., Davis, M. F., Donohoe, B. S. (2013). Plant cell walls: Basics of structure, chemistry, accessibility and influence on conversion. In: Wyman, C. E. (Ed.). Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. John Wiley & Sons Ltd, pp. 24-38.10.1002/9780470975831.ch3Search in Google Scholar

Delhomme C., Weuster-Botz D., Kühn F. E., 2009. Succinic acid from renewable resources as a C4 building-block chemical-a review of the catalytic possibilities in aqueous media. Green Chem., 11, 13-26.10.1039/B810684CSearch in Google Scholar

Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangó, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J. (2012). CuO and ZnO nanoparticles; phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanoparticle Res., 14 (9), 1-15.10.1007/s11051-012-1125-9Search in Google Scholar

Djaković, T., Jovanoviã, Z. (2003). The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulgarian J. Plant Phys., Special Issue, 264-272.Search in Google Scholar

Dožel, J., Greilhuber, J., Suda, J. (2007). Flow cytometry with plants: An overview. In: Doležel, J., Greilhuber, J., Suda J. (eds.). Flow cytometry with plant cells. WILEY- VCH Verlag Gmb H&Co, KGaA, pp. 41-65.Search in Google Scholar

Eenschooten, C., Guillaumie, F., Kontogeorgis, G. M., Stenby, E. H., Schwach-Abdellaoui, K. (2010). Preparation and structural characterisation of novel and versatile amphiphilicoctenyl succinic anhydride-modified hyaluronic acid derivatives. Carbohyd. Polym., 79, 597-605.10.1016/j.carbpol.2009.09.011Search in Google Scholar

Galbraith, D. W. (2010). Flow cytometry and fluorescence-activated cell sorting in plants: The past, present, and future. Biomédica, 30, 65-70.10.7705/biomedica.v30i0.824Search in Google Scholar

Grauda, D., Mikelsone, A., Auzina, A., Stramkale, V., Rashal, I. (2013). Use of plant biotechnology methods for flax breeding in Latvia. In: Zaikov, G. E., Pudel, F. (eds.). Organic Chemistry, Biochemistry, Biotechnology and Renewable Resources. Research and Development Today and Tomorrow. Nova Science Publishers, Inc., USA, pp. 1-10.Search in Google Scholar

Grauda, D., Mikelsone, A., Rashal, I. (2009). Use of antioxidants for enhancing flax multiplication rate in tissue culture. Acta Hort., 812, 147-151.10.17660/ActaHortic.2009.812.15Search in Google Scholar

Kasha, K. J., Simion, E., Oro, R., Shim, Y. S. (2003). Barley isolated microspore culture protocol. In: Maluszynski, K. J. Kasha, Forster, B. P., Szarejko, V. (eds.). Double Haploid Production in Crop Plants. Kluwer Academic, Dordrecht, Boston and London, pp. 43-47.10.1007/978-94-017-1293-4_7Search in Google Scholar

Kinrade, T. B., Yermiyahu, U., Rytwo, G. (1998). Computation of surface electrical potentials of plant cell membranes. Plant Physiol., 118 (2), 505-512.10.1104/pp.118.2.505348259765535Search in Google Scholar

Knauf, F., Mohebbi, N., Teichert, C., Herold, D., Rogina, B., Helfand, S., Gollasch, M., Luft, F. C., Aronson, P. S. (2006). The life-extending gene in dyencodesanex changer for Krebs-cycleintermediates. Biochem. J., PMID: 16608441.Search in Google Scholar

Lyashenko, I. (2014). Assessment of the impact of amber solution on derma and subcutaneous tissue cell structure. In: Knēts, I. (Ed.). Amber Way: Towards the Future of Latvia in the World. Mantojums, Rīga, pp. 51-76.Search in Google Scholar

Lyashenko, I. (2014). Preparation and research of source materials. In: Knēts, I. (Ed.): Amber Way: Towards the Future of Latvia in the World. Mantojums, Rīga, pp. 77-97.Search in Google Scholar

Mie, Y., Kishita, M., Nishiyama, K., Taniguchi, I. (2008). Interfacial electron transfer kinetics of myoglobins chemically modified with succinic anhydride at an indium oxide electrode. J. Electro Anal. Chem., 624, 305-309.10.1016/j.jelechem.2008.06.028Search in Google Scholar

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays in tobacco tissue culture. Plantarium, 15, 473-497.10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

Neves-Petersen, M. T., Klitgaard, S., Skovsen, E., Petersen, S. B., T¸mmeraas, K., Schwach-Abdellaoui, K. (2010). Biophysical properties of phenyl succinic acid derivatised hyaluronic acid. J. Fluoresc., 20, 483-492.10.1007/s10895-009-0570-z19943094Search in Google Scholar

Oparka, K. J. (2004). Getting the message across: How do plant cells exchange macromolecular complexes? Trends Plant Sci., 9 (1), 33-41.Search in Google Scholar

Suno, M., Nagaoka, A. (1989). Inhibition of Lipid Peroxidation by Idebenonein Brain Mitochondria in the Presence of Succinate. Central Research Division, Take da Chemical Industries, Ltd., Osaka, Japan. PMID: 2764644Search in Google Scholar

Tretter, L., Szabados, G., Ando, A. (1987). Effect of succinate on mitochondria lipid peroxidation, the protective effect of succinate against functional and structural changes induced by lipid peroxidation. J. Bioenerg. Biomembr., 19 (1), 31-44Search in Google Scholar

Wang, P., Zhou, D., Kinraide, T. B., Luo, X., Li, L., Li, D., Zhang, H. (2008). Cell membrane surface potential (ø0) plays a dominant role in the phytotoxicity of coper and arsenate. Plant Physiol., 148 (4), 2134-2143.10.1104/pp.108.127464259367918829983Search in Google Scholar

eISSN:
1407-009X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
General Interest, Mathematics, General Mathematics