Otwarty dostęp

The Effects of Hormonal Therapy and Exercise on Bone Turnover in Postmenopausal Women: A Randomised Double-Blind Pilot Study


Zacytuj

1. Delmas PD, Confavreux E, Garnero P, Fardellone P, de Vernejoul MC, Cormier C, et al. A combination of low doses of 17 beta-estradiol and norethisterone acetate prevents bone loss and normalizes bone turnover in postmenopausal women. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2000; 11: 177–87.10.1007/PL00004180Search in Google Scholar

2. Dresner-Pollak R, Parker RA, Poku M, Thompson J, Seibel MJ, Greenspan SL. Biochemical markers of bone turnover reflect femoral bone loss in elderly women. Calcified tissue international. 1996; 59: 328–33.10.1007/s002239900135Search in Google Scholar

3. Juraschek M, Seibel MJ, Woitge HW, Krempien B, Bauss F. Association between histomorphometry and biochemical markers of bone turnover in a longitudinal rat model of parathyroid hormone-related peptide (PTHrP)-mediated tumor osteolysis. Bone. 2000; 26: 475–83.10.1016/S8756-3282(00)00259-3Search in Google Scholar

4. Seibel MJ. Molecular markers of bone turnover: biochemical, technical and analytical aspects. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2000; 11 Suppl 6: S18–29.10.1007/s001980070003Search in Google Scholar

5. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. The Clinical biochemist Reviews / Australian Association of Clinical Biochemists. 2005; 26: 97–122.Search in Google Scholar

6. Seibel MJ. Biochemical markers of bone turnover part II: clinical applications in the management of osteoporosis. The Clinical biochemist Reviews / Australian Association of Clinical Biochemists. 2006; 27: 123–38.Search in Google Scholar

7. Seibel MJ. Clinical application of biochemical markers of bone turnover. Arquivos brasileiros de endocrinologia e metabologia. 2006; 50: 603–20.10.1590/S0004-27302006000400006Search in Google Scholar

8. Seibel MJ, Dunstan CR, Zhou H, Allan CM, Handelsman DJ. Sex steroids, not FSH, influence bone mass. Cell. 2006; 127: 1079; author reply 80–1.10.1016/j.cell.2006.12.002Search in Google Scholar

9. Woitge HW, Seibel MJ. Biochemical markers to survey bone turnover. Rheumatic diseases clinics of North America. 2001; 27: 49–80.10.1016/S0889-857X(05)70187-3Search in Google Scholar

10, Schlemmer A, Hassager C, Delmas PD, Christiansen C. Urinary excretion of pyridinium cross-links in healthy women; the long-term effects of menopause and oestrogen/progesterone therapy. Clin Endocrinol (Oxf). 1994; 40: 777–82.10.1111/j.1365-2265.1994.tb02512.x8033369Search in Google Scholar

11, Rosen CJ, Chesnut CH, 3rd, Mallinak NJ. The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab. 1997; 82: 1904–10.Search in Google Scholar

12. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996; 11: 337–49.10.1002/jbmr.56501103078852944Search in Google Scholar

13. Guthrie JR, Ebeling PR, Hopper JL, Barrett-Connor E, Dennerstein L, Dudley EC, et al. A prospective study of bone loss in menopausal Australian-born women. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 1998; 8: 282–90.10.1007/s0019800500669797914Search in Google Scholar

14. Mazzuoli G, Acca M, Pisani D, Diacinti D, Scarda A, Scarnecchia L, et al. Annual skeletal balance and metabolic bone marker changes in healthy early postmenopausal women: results of a prospective study. Bone. 2000; 26: 381–6.10.1016/S8756-3282(00)00242-8Search in Google Scholar

15. Bischoff H, Stahelin HB, Vogt P, Friderich P, Vonthein R, Tyndall A, et al. Immobility as a major cause of bone remodeling in residents of a long-stay geriatric ward. Calcified tissue international. 1999; 64: 485–9.10.1007/s002239900638Search in Google Scholar

16. Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000; 355: 1607–11.10.1016/S0140-6736(00)02217-0Search in Google Scholar

17. Macari S, Duffles LF, Queiroz-Junior CM, Madeira MF, Dias GJ, Teixeira MM, et al. Oestrogen regulates bone resorption and cytokine production in the maxillae of female mice. Archives of oral biology. 2015; 60: 333–41.10.1016/j.archoralbio.2014.11.01025438102Search in Google Scholar

18. Westerlind KC, Wronski TJ, Ritman EL, Luo ZP, An KN, Bell NH, et al. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A. 1997; 94: 4199–204.10.1073/pnas.94.8.4199206019108129Search in Google Scholar

19. Prior JC, Vigna YM, Wark JD, Eyre DR, Lentle BC, Li DK, et al. Premenopausal ovariectomy-related bone loss: a randomized, double-blind, one-year trial of conjugated estrogen or medroxyprogesterone acetate. J Bone Miner Res. 1997; 12: 1851–63.10.1359/jbmr.1997.12.11.18519383690Search in Google Scholar

20. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992; 257: 88–91.10.1126/science.16211001621100Search in Google Scholar

21. Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M, et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. The Journal of experimental medicine. 1997; 186: 489–95.10.1084/jem.186.4.48921990299254647Search in Google Scholar

22. Horowitz MC. Cytokines and estrogen in bone: antiosteoporotic effects. Science.1993; 260: 626–7.10.1126/science.84801748480174Search in Google Scholar

23. Passeri G, Girasole G, Jilka RL, Manolagas SC. Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology. 1993; 133: 822–8.10.1210/endo.133.2.83937768393776Search in Google Scholar

24. Ralston SH, Ho LP, Helfrich MH, Grabowski PS, Johnston PW, Benjamin N. Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res. 1995; 10: 1040–9.10.1002/jbmr.5650100708Search in Google Scholar

25. Ray A, Prefontaine KE, Ray P. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem. 1994; 269: 12940–6.10.1016/S0021-9258(18)99966-7Search in Google Scholar

26. Pottratz ST, Bellido T, Mocharla H, Crabb D, Manolagas SC. 17 beta-Estradiol inhibits expression of human interleukin-6 promoter-reporter constructs by a receptor-dependent mechanism. J Clin Invest. 1994; 93: 944–50.10.1172/JCI117100Search in Google Scholar

27. Turner CH, Takano Y, Owan I, Murrell GA. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol. 1996; 270: E634–9.10.1152/ajpendo.1996.270.4.E634Search in Google Scholar

28. Adami S, Gatti D, Braga V, Bianchini D, Rossini M. Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women. J Bone Miner Res. 1999; 14: 120–4.10.1359/jbmr.1999.14.1.120Search in Google Scholar

29. Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res. 1998; 13: 310–9.10.1359/jbmr.1998.13.2.310Search in Google Scholar

30. Huddleston AL, Rockwell D, Kulund DN, Harrison RB. Bone mass in lifetime tennis athletes. Jama. 1980; 244: 1107–9.10.1001/jama.1980.03310100025022Search in Google Scholar

31. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA. Humeral hypertrophy in response to exercise. J Bone Joint Surg Am. 1977; 59: 204–8.10.2106/00004623-197759020-00012Search in Google Scholar

32. Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone. 1994; 15: 279–84.10.1016/8756-3282(94)90289-5Search in Google Scholar

33. Kohrt WM, Snead DB, Slatopolsky E, Birge SJ, Jr. Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res. 1995; 10: 1303–11.10.1002/jbmr.56501009067502701Search in Google Scholar

34. Heikkinen J, Kyllonen E, Kurttila-Matero E, Wilen-Rosenqvist G, Lankinen KS, Rita H, et al. HRT and exercise: effects on bone density, muscle strength and lipid metabolism. A placebo controlled 2-year prospective trial on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas. 1997; 26: 139–49.10.1016/S0378-5122(96)01098-5Search in Google Scholar

35. Humphries B, Newton RU, Bronks R, Marshall S, McBride J, Triplett-McBride T, et al. Effect of exercise intensity on bone density, strength, and calcium turnover in older women. Med Sci Sports Exerc. 2000; 32: 1043–50.10.1097/00005768-200006000-00002Search in Google Scholar

36. Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. Jama. 1994; 272: 1909–14.10.1001/jama.1994.03520240037038Search in Google Scholar

37. Pruitt LA, Taaffe DR, Marcus R. Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res. 1995; 10: 1788–95.10.1002/jbmr.5650101123Search in Google Scholar

38. Chamay A, Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff's law. J Biomech. 1972; 5: 173–80.10.1016/0021-9290(72)90053-XSearch in Google Scholar

39. Ito M, Nakamura T, Ikeda S, Tahara Y, Hashmi R, Tsurusaki K, et al. Effects of lifetime volleyball exercise on bone mineral densities in lumbar spine, calcaneus and tibia for pre-, peri- and postmenopausal women. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2001; 12: 104–11.10.1007/s00198017014111303709Search in Google Scholar

40. Coupland CA, Cliffe SJ, Bassey EJ, Grainge MJ, Hosking DJ, Chilvers CE. Habitual physical activity and bone mineral density in postmenopausal women in England. Int J Epidemiol. 1999; 28: 241–6.10.1093/ije/28.2.24110342685Search in Google Scholar

41. Welsh L, Rutherford OM. Hip bone mineral density is improved by high-impact aerobic exercise in postmenopausal women and men over 50 years. Eur J Appl Physiol Occup Physiol. 1996; 74: 511–7.10.1007/BF023767668971492Search in Google Scholar

42. Chow R, Harrison JE, Notarius C. Effect of two randomised exercise programmes on bone mass of healthy postmenopausal women. Br Med J (Clin Res Ed). 1987; 295: 1441–4.10.1136/bmj.295.6611.144112486033121055Search in Google Scholar

43. Snow CM, Shaw JM, Winters KM, Witzke KA. Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. J Gerontol A Biol Sci Med Sci. 2000; 55: M489–91.10.1093/gerona/55.9.M489Search in Google Scholar

44. Moreira LD, Fronza FC, Dos Santos RN, Zach PL, Kunii IS, Hayashi LF, et al. The benefits of a high-intensity aquatic exercise program (HydrOS) for bone metabolism and bone mass of postmenopausal women. Journal of bone and mineral metabolism. 2014; 32: 411–9.Search in Google Scholar

45. Moreira LD, Oliveira ML, Lirani-Galvao AP, Marin-Mio RV, Santos RN, Lazaretti-Castro M. Physical exercise and osteoporosis: effects of different types of exercises on bone and physical function of postmenopausal women. Arquivos brasileiros de endocrinologia e metabologia. 2014; 58: 514–22.10.1590/0004-273000000337425166042Search in Google Scholar

46. Kerr D, Ackland T, Maslen B, Morton A, Prince R. Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res. 2001; 16: 175–81.10.1359/jbmr.2001.16.1.17511149482Search in Google Scholar

47. Ryan AS, Treuth MS, Hunter GR, Elahi D. Resistive training maintains bone mineraldensityin postmenopausal women. Calcified tissue international. 1998; 62: 295–9.10.1007/s0022399004349504952Search in Google Scholar

48. Cardinale M, Pope MH. The effects of whole body vibration on humans: dangerous or advantageous? Acta physiologica Hungarica. 2003; 90: 195–206.Search in Google Scholar

49. Weber-Rajek M, Mieszkowski J, Niespodzinski B, Ciechanowska K. Whole-body vibration exercise in postmenopausal osteoporosis. Przeglad menopauzalny = Menopause review. 2015; 14: 41–7.10.5114/pm.2015.48679444019626327887Search in Google Scholar

50. Tankisheva E, Bogaerts A, Boonen S, Delecluse C, Jansen P, Verschueren SM. Effects of a Six-Month Local Vibration Training on Bone Density, Muscle Strength, Muscle Mass, and Physical Performance in Postmenopausal Women. Journal of strength and conditioning research / National Strength & Conditioning Association. 2015; 29: 2613–22.10.1519/JSC.000000000000089525992656Search in Google Scholar

51. Tankisheva E, Bogaerts A, Boonen S, Feys H, Verschueren S. Effects of intensive whole-body vibration training on muscle strength and balance in adults with chronic stroke: a randomized controlled pilot study. Archives of physical medicine and rehabilitation. 2014; 95: 439–46.10.1016/j.apmr.2013.09.00924067865Search in Google Scholar

52. Notelovitz M, Martin D, Tesar R, Khan FY, Probart C, Fields C, et al. Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res. 1991; 6: 583–90.10.1002/jbmr.56500606091887821Search in Google Scholar

eISSN:
1857-8985
ISSN:
1857-9345
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education