Otwarty dostęp

Recent Advances in the Pathogenesis and Treatment of Chronic Lymphocytic Leukemia


Zacytuj

1. Hallek M. Signaling the end of chronic lymphocytic leukemia: new frontline treatment strategies. Blood. 2013; 122(23): 3723-34.10.1182/blood-2013-05-49828724065239Search in Google Scholar

2. Dores GM, Anderson WF, Curtis RE, Landgren O, Ostroumova E, Bluhm EC, et al. Chronic lympho-cytic leukaemia and small lymphocytic lymphoma: overview of the descriptive epidemiology. Br J Hae-matol. 2007; 139(5): 809-19.10.1111/j.1365-2141.2007.06856.x17941952Search in Google Scholar

3. Speedy HE, Sava G, Houlston RS. Inherited suscepti-bility to CLL. Adv Exp Med Biol. 2013; 792: 293-308.10.1007/978-1-4614-8051-8_1324014302Search in Google Scholar

4. Rawstron AC, Bennett FL, O'Connor SJ, Kwok M, Fenton JA, Plummer M, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008; 359(6): 575-83.10.1056/NEJMoa07529018687638Search in Google Scholar

5. Ghia P, Caligaris-Cappio F. Monoclonal B-cell lymp-hocytosis: right track or red herring? Blood. 2012; 119(19): 4358-62.10.1182/blood-2012-01-40468122422819Search in Google Scholar

6. Shanafelt TD, Kay NE, Rabe KG, Call TG, Zent CS, Maddocks K, et al. Brief report: natural history of individuals with clinically recognized monoclonal B-cell lymphocytosis compared with patients with Rai 0 chronic lymphocytic leukemia. J Clin Oncol. 2009; 27(24): 3959-63.10.1200/JCO.2008.21.2704273439719620484Search in Google Scholar

7. Gribben JG, Riches JC. Immunotherapeutic strategies including transplantation: eradication of disease. He-matology Am Soc Hematol Educ Program. 2013; 2013: 151-7.10.1182/asheducation-2013.1.15124319176Search in Google Scholar

8. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. International Work-shop on Chronic Lymphocytic Leukemia. Guidelines for the diagnosis and treatment of chronic lympho-cytic leukemia: a report from the International Work-shop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008; 111(12): 5446-56.10.1182/blood-2007-06-093906297257618216293Search in Google Scholar

9. Damle RN, Calissano C, Chiorazzi N. Chronic lymp-hocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol. 2010; 23(1): 33-45.10.1016/j.beha.2010.02.001292199020620969Search in Google Scholar

10. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000; 343(26): 1910-6.10.1056/NEJM20001228343260211136261Search in Google Scholar

11. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferra-cin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005; 102(39): 13944-9.10.1073/pnas.0506654102123657716166262Search in Google Scholar

12. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lym-phocytic leukemia. Cancer Cell. 2010; 17(1): 28-40.10.1016/j.ccr.2009.11.01920060366Search in Google Scholar

13. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G, et al. Function-al dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood. 2012; 119(13): 2981-90.10.1182/blood-2011-09-38181422174151Search in Google Scholar

14. Rossi D, Fangazio M, Gaidano G. The spectrum of genetic defects in chronic lymphocytic leukemia. Mediterr J Hematol Infect Dis. 2012; 4(1): e2012076.10.4084/mjhid.2012.076350752723205264Search in Google Scholar

15. Martínez-Trillos A, Pinyol M, Navarro A, Aymerich M, Jares P, Juan M, et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lympho-cytic leukemia patients with favorable outcome. Blood. 2014; 123(24): 3790-6.10.1182/blood-2013-12-54330624782504Search in Google Scholar

16. Burger JA, Gribben JG. The microenvironment in chr-onic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol. 2014; 24: 71-81.10.1016/j.semcancer.2013.08.01124018164Search in Google Scholar

17. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood. 2001; 97(9): 2777-83.10.1182/blood.V97.9.2777Search in Google Scholar

18. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP, et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood. 2007; 109(4): 1660-8.10.1182/blood-2006-05-02168317038534Search in Google Scholar

19. Dal-Bo M, Bertoni F, Forconi F, Zucchetto A, Bom-ben R, Marasca R, et al. Intrinsic and extrinsic fac-tors influencing the clinical course of B-cell chronic lymphocytic leukemia: prognostic markers with pathogenetic relevance. J Transl Med. 2009; 7: 76.10.1186/1479-5876-7-76274791319715592Search in Google Scholar

20. Petlickovski A, Laurenti L, Li X, Marietti S, Chiu-solo P, Sica S, et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005; 105(12): 4820-7.10.1182/blood-2004-07-266915728130Search in Google Scholar

21. Efremov DG, Gobessi S, Longo PG. Signaling path-ways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun Rev. 2007; 7(2): 102-8.10.1016/j.autrev.2007.02.021Search in Google Scholar

22. Krysov S, Dias S, Paterson A, Mockridge CI, Potter KN, Smith KA, et al. Surface IgM stimulation indu-ces MEK1/2-dependent MYC expression in chronic lymphocytic leukemia cells. Blood. 2012; 119(1): 170-9.10.1182/blood-2011-07-370403Search in Google Scholar

23. Kostareli E, Gounari M, Agathangelidis A, Stamato-poulos K. Immunoglobulin gene repertoire in chronic lymphocytic leukemia: insight into antigen selection and microenvironmental interactions. Mediterr J Hematol Infect Dis. 2012; 4(1): e2012052.10.4084/mjhid.2012.052Search in Google Scholar

24. Kipps TJ, Carson DA. Autoantibodies in chronic lymphocytic leukemia and related systemic autoim-mune diseases. Blood. 1993; 81(10): 2475-87.10.1182/blood.V81.10.2475.2475Search in Google Scholar

25. Schroeder HW Jr, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibo-dy repertoire. Immunol Today. 1994; 15(6): 288-94.10.1016/0167-5699(94)90009-4Search in Google Scholar

26. Efremov DG, Ivanovski M, Siljanovski N, Pozzato G, Cevreska L, Fais F, et al. Restricted immuno-globulin VH region repertoire in chronic lymphocytic leukemia patients with autoimmune hemolytic ane-mia. Blood. 1996; 87(9): 3869-76.10.1182/blood.V87.9.3869.bloodjournal8793869Search in Google Scholar

27. Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J, et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med. 2004; 200(4): 519-25.10.1084/jem.20040544221193615314077Search in Google Scholar

28. Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K, et al. Subsets with restricted immu-noglobulin gene rearrangement features indicate a role for antigen selection in the development of chro-nic lymphocytic leukemia. Blood. 2004; 104(9): 2879-85.10.1182/blood-2004-01-013215217826Search in Google Scholar

29. Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ. Chronic lymphocytic leuke-mia B cells of more than 1% of patients express vir-tually identical immunoglobulins. Blood. 2004; 104(8): 2499-504. 30. Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012; 119(19): 4467-75. 31. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998; 102(8): 1515-25. 32. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999; 94(6): 1840-7. 33. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Ste-venson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999; 94(6): 1848-54. 34. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001; 194(11): 1639-47. 35. Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microen-vironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011; 117(2): 563-74. 36. Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, et al. The actin and tetraspanin net-works organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013; 38(3): 461-74.Search in Google Scholar

37. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG. The Akt/Mcl-1 pathway plays a promistream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008; 111(2): 846-55.10.1182/blood-2007-05-08903717928528Search in Google Scholar

38. Negro R, Gobessi S, Longo PG, He Y, Zhang ZY, Laurenti L, Efremov DG. Overexpression of the autoimmunity-associated phosphatase PTPN22 pro-motes survival of antigen-stimulated CLL cells by selectively activating AKT. Blood. 2012; 119(26): 6278.87.10.1182/blood-2012-01-403162338319422569400Search in Google Scholar

39. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest. 2005; 115(2): 369.78.10.1172/JCI200522094Search in Google Scholar

40. Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG. ZAP-70 enhances B-cell-receptor sig-naling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lym-phoma B cells. Blood. 2007; 109(5): 2032.9.10.1182/blood-2006-03-01175917038529Search in Google Scholar

41. Gobessi S, Laurenti L, Longo PG, Carsetti L, Berno V, Sica S, et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia. 2009; 23(4): 686.97.10.1038/leu.2008.34619092849Search in Google Scholar

42. Ringshausen I, Schneller F, Bogner C, Hipp S, Duy-ster J, Peschel C, Decker T. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood. 2002; 100(10): 3741.8.10.1182/blood-2002-02-053912393602Search in Google Scholar

43. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, et al. Phosphatidylinositol 3-kinase-Ɣ inhibitor CAL-101 shows promising pre-clinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010; 116(12): 2078.88.10.1182/blood-2010-02-271171295185520522708Search in Google Scholar

44. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treat-ment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011; 117(23): 6287.96.10.1182/blood-2011-01-328484312294721422473Search in Google Scholar

45. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, et al. Chronic lymphocytic leukaemia is driven by antigen-indepen-dent cell-autonomous signalling. Nature. 2012; 489(7415): 309.12.10.1038/nature1130922885698Search in Google Scholar

46. Binder M, Muller F, Frick M, Wehr C, Simon F, Leistler B, et al. CLL B-cell receptors can recognize themselves: alternative epitopes and structural clues for autostimulatory mechanisms in CLL. Blood. 2013; 121(1): 239.41.10.1182/blood-2012-09-45443923287626Search in Google Scholar

47. Lanemo Myhrinder A, Hellqvist E, Sidorova E, et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood. 2008; 111(7): 3838.3848.10.1182/blood-2007-11-12545018223168Search in Google Scholar

48. Chu CC, Catera R, Hatzi K, et al. Chronic lymp-hocytic leukemia antibodies with a common stereo-typic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood. 2008; 112(13): 5122.9.10.1182/blood-2008-06-162024259760818812466Search in Google Scholar

49. Catera R, Silverman GJ, Hatzi K, et al. Chronic lymphocytic leukemia cells recognize conserved epi-topes associated with apoptosis and oxidation. Mol Med. 2008; 14(11.12): 665.74.10.2119/2008-00102.Catera258286019009014Search in Google Scholar

50. Chu CC, Catera R, Zhang L, et al. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of ori-gin. Blood. 2010; 115(19): 3907.15.10.1182/blood-2009-09-244251286955520110421Search in Google Scholar

51. Binder M, Lechenne B, Ummanni R, et al. Stereoty-pical chronic lymphocytic leukemia B-cell receptors recognize survival promoting antigens on stromal cells. PLoS One. 2010; 5(12): e15992.10.1371/journal.pone.0015992301272021209908Search in Google Scholar

52. Hoogeboom R, van Kessel KP, Hochstenbach F, et al. A mutated B cell chronic lymphocytic leukemia subset that recognizes and responds to fungi. J Exp Med. 2013; 210: 59.70.10.1084/jem.20121801354971823296468Search in Google Scholar

53. Kostareli E, Gounari M, Janus A, et al. Antigen re-ceptor stereotypy across B-cell lymphoproliferations: the case of IGHV4-59/IGKV3-20 receptors with rheumatoid factor activity. Leukemia. 2012; 26: 1127.31.10.1038/leu.2011.31122051533Search in Google Scholar

54. Hoogeboom R, Wormhoudt TA, Schipperus MR, et al. A novel chronic lymphocytic leukemia subset ex-pressing mutated IGHV3-7-encoded rheumatoid fac-tor B-cell receptors that are functionally proficient. Leukemia. 2013; 27: 738.40.10.1038/leu.2012.23822902363Search in Google Scholar

55. Iacovelli S, Hug E, Bennardo S, Duehren-von Minden M, Gobessi S, Rinaldi A, et al. Two types of BCR interactions are positively selected during leukemia development in the Eµ-TCL1 transgenic mouse model of CLL. Blood. 2015 Jan 6. pii: blood-2014-07-587790. [Epub ahead of print] 56. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A. 2002; 99(10): 6955.60.Search in Google Scholar

57. Chiorazzi N, Efremov DG. Chronic lymphocytic leu-kemia: a tale of one or two signals? Cell Res. 2013; 23(2): 182.5.10.1038/cr.2012.152356781923147791Search in Google Scholar

58. Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S, Yoshimoto G, et al. Self-renewing hemato-poietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011; 20(2): 246.59.10.1016/j.ccr.2011.06.02921840488Search in Google Scholar

59. Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM, et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep. 2013; 4(3): 566.77.10.1016/j.celrep.2013.07.01123933259Search in Google Scholar

60. Rasi S, Monti S, Spina V, Foa R, Gaidano G, Rossi D. Analysis of NOTCH1 mutations in monoclonal B-cell lymphocytosis. Haematologica. 2012; 97(1): 153.4.10.3324/haematol.2011.053090324894721993686Search in Google Scholar

61. Greco M, Capello D, Bruscaggin A, Spina V, Rasi S, Monti S, et al. Analysis of SF3B1 mutations in mo-noclonal B-cell lymphocytosis. Hematol Oncol. 2013; 31(1): 54.5.10.1002/hon.2013Search in Google Scholar

62. Efremov DG, Bomben R, Gobessi S, Gattei V. TLR9 signaling defines distinct prognostic subsets in CLL. Front Biosci (Landmark Ed). 2013; 18: 371.86.10.2741/4108Search in Google Scholar

63. Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lympho-cytic leukemia. N Engl J Med. 2000; 343(24): 1750-7.10.1056/NEJM200012143432402Search in Google Scholar

64. O'Brien SM, Kantarjian HM, Cortes J, Beran M, Koller CA, Giles FJ, et al. Results of the fludarabine and cyclophosphamide combination regimen in chronic lymphocytic leukemia. J Clin Oncol. 2001; 19(5): 1414-20.10.1200/JCO.2001.19.5.1414Search in Google Scholar

65. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. International Group of In-vestigators; German Chronic Lymphocytic Leukae-mia Study Group. Addition of rituximab to fludara-bine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010; 376(9747): 1164-74.10.1016/S0140-6736(10)61381-5Search in Google Scholar

66. Tam CS, O'Brien S, Wierda W, Kantarjian H, Wen S, Do KA, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008; 112(4): 975-80.10.1182/blood-2008-02-140582395249818411418Search in Google Scholar

67. Foon KA, Boyiadzis M, Land SR, Marks S, Raptis A, Pietragallo L, et al. Chemoimmunotherapy with low-dose fludarabine and cyclophosphamide and high dose rituximab in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol. 2009; 27(4): 498-503.10.1200/JCO.2008.17.261919075274Search in Google Scholar

68. Fischer K, Cramer P, Busch R, Böttcher S, Bahlo J, Schubert J, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012; 30(26): 3209-16.10.1200/JCO.2011.39.268822869884Search in Google Scholar

69. Kolibaba KS, Sterchele JA, Joshi AD, Forsyth M, Alwon E, Beygi H, Kennealey GT. Demographics, treatment patterns, safety, and real-world effective-ness in patients aged 70 years and over with chronic lymphocytic leukemia receiving bendamustine with or without rituximab: a retrospective study. Ther Adv Hematol. 2013; 4(3): 157-71.10.1177/2040620713478629366644623730494Search in Google Scholar

70. Laurenti L, Vannata B, Innocenti I, Autore F, Santini F, Piccirillo N, et al. Chlorambucil plus Rituximab as Front-Line Therapy in Elderly/Unfit Patients Affected by B-Cell Chronic Lymphocytic Leukemia: Results of a Single-Centre Experience. Mediterr J Hematol Infect Dis. 2013; 5(1): e2013031.10.4084/mjhid.2013.031Search in Google Scholar

71. Foà R, Del Giudice I, Cuneo A, Del Poeta G, Ciolli S, Di Raimondo F, et al. Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients. Am J Hematol. 2014; 89(5): 480-6.10.1002/ajh.2366824415640Search in Google Scholar

72. Hillmen P, Gribben JG, Follows GA, Milligan D, Sayala HA, Moreton P, et al. Rituximab plus chlo-rambucil as first-line treatment for chronic lym-phocytic leukemia: Final analysis of an open-label phase II study. J Clin Oncol. 2014; 32(12): 1236-41.10.1200/JCO.2013.49.6547487634324638012Search in Google Scholar

73. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chloram-bucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370(12): 1101-10.10.1056/NEJMoa131398424401022Search in Google Scholar

74. Suljagic M, Longo PG, Bennardo S, Perlas E, Leone G, Laurenti L, Efremov DG. The Syk inhibitor fosta-matinib disodium (R788) inhibits tumor growth in the Eµ- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood. 2010; 116(23): 4894.905.10.1182/blood-2010-03-27518020716772Search in Google Scholar

75. Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholome K, Burger M, et al. Spleen tyrosine kinase is overex-pressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 2009; 69(13): 5424.32.10.1158/0008-5472.CAN-08-425219549911Search in Google Scholar

76. Baudot AD, Jeandel PY, Mouska X, Maurer U, Tartare-Deckert S, Raynaud SD, et al. The tyrosine kinase Syk regulates the survival of chronic lympho-cytic leukemia B cells through PKCdelta and pro-teasome-dependent regulation of Mcl-1 expression. Oncogene. 2009; 28(37): 3261.73.10.1038/onc.2009.17919581935Search in Google Scholar

77. Efremov DG, Laurenti L. The Syk kinase as a therapeutic target in leukemia and lymphoma. Expert Opin Investig Drugs. 2011; 20(5): 623.36.10.1517/13543784.2011.57032921438742Search in Google Scholar

78. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lym-phocytic leukemia. Blood. 2010; 115(13): 2578.85.10.1182/blood-2009-08-236471285236219965662Search in Google Scholar

79. Woyach JA, Johnson AJ, Byrd JC. The B-cell recep-tor signaling pathway as a therapeutic target in CLL. Blood. 2012; 120(6): 1175.84.10.1182/blood-2012-02-362624341871422715122Search in Google Scholar

80. Currie KS, Kropf JE, Lee T, Blomgren P, Xu J, Zhao Z, et al. Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. J Med Chem. 2014; 57(9): 3856.73.10.1021/jm500228a24779514Search in Google Scholar

81. Sharman JP, Klein LM, Boxer M, Kolibaba KS, Abella-Dominicis E, Hawkins MJ, Di Paolo J, Hu J, Reddy A, Jin F, Melchor-Khan F, Yasenchak CA. Phase 2 trial of GS-9973, a selective Syk inhibitor, in chronic lymphocytic leukemia (CLL). J Clin Oncol 32: 5s, 2014 (suppl; abstr 7007).10.1200/jco.2014.32.15_suppl.7007Search in Google Scholar

82. Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P, et al. The Akt signaling path-way determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia. 2007; 21(1): 110.20.10.1038/sj.leu.240441717024114Search in Google Scholar

83. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014; 13(2): 140.56.10.1038/nrd4204399498124481312Search in Google Scholar

84. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, et al. CAL-101, a p110-delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011; 117(2): 591.4.10.1182/blood-2010-03-275305369450520959606Search in Google Scholar

85. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phospho-inositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011; 118(13): 3603-12.10.1182/blood-2011-05-352492491656221803855Search in Google Scholar

86. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110ä, for relap-sed/refractory chronic lymphocytic leukemia. Blood. 2014; 123(22): 3390-7.10.1182/blood-2013-11-535047412341424615777Search in Google Scholar

87. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014; 370(11): 997-1007.10.1056/NEJMoa1315226416136524450857Search in Google Scholar

88. Woyach JA, Bojnik E, Ruppert AS, Stefanovski MR, Goettl VM, Smucker KA, et al. Bruton's tyrosine kinase (BTK) function is important to the develop-ment and expansion of chronic lymphocytic leukemia (CLL). Blood. 2014; 123(8): 1207-13.10.1182/blood-2013-07-515361393119024311722Search in Google Scholar

89. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013; 31(1): 88-94.10.1200/JCO.2012.42.7906550516623045577Search in Google Scholar

90. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013; 369(1): 32-42.10.1056/NEJMoa1215637377252523782158Search in Google Scholar

91. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM, et al. RESONATE Investigators. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014; 371(3): 213-23.10.1056/NEJMoa1400376Search in Google Scholar

92. O'Brien S, Furman RR, Coutre SE, Sharman JP, Bur-ger JA, Blum KA, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leuka-emia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014; 15(1): 48-58.10.1016/S1470-2045(13)70513-8Search in Google Scholar

93. Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014; 15(10): 1090-9.10.1016/S1470-2045(14)70335-3Search in Google Scholar

94. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005; 102(39): 13944-9.10.1073/pnas.0506654102123657716166262Search in Google Scholar

95. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012; 30(5): 488-96.10.1200/JCO.2011.34.7898497908222184378Search in Google Scholar

96. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor acti-vity while sparing platelets. Nat Med. 2013; 19(2): 202-8.10.1038/nm.304823291630Search in Google Scholar

97. Seymour JF, Davids MS, Pagel JM, Kahl BS, Wierda WG, Miller TP, et al. Humerickhouse RA, Roberts AW. Bcl-2 Inhibitor ABT-199 (GDC-0199) Monothe-rapy Shows Anti-Tumor Activity Including Complete Remissions In High-Risk Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL) and Small Lymphocytic Lymphoma (SLL). Blood 2013; 122: 872.Search in Google Scholar

98. Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014; 65: 333-47.10.1146/annurev-med-060512-150254412007724274181Search in Google Scholar

99. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chro-nic lymphoid leukemia. N Engl J Med. 2011; 365(8): 725-33.10.1056/NEJMoa1103849338727721830940Search in Google Scholar

100. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013; 368(16): 1509-18.10.1056/NEJMoa1215134405844023527958Search in Google Scholar

101. Kochenderfer JN, Dudley ME, Kassim SH, Somer-ville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-Refractory Diffuse Large B-Cell Lym-phoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expres-sing an Anti-CD19 Chimeric Antigen Receptor. J Clin Oncol. 2014 Aug 25. pii: JCO.2014.56.2025.Search in Google Scholar

102. Porter DL, Kalos M, Frey NV, Grupp SA, Loren AW, Jemison C, et al. Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019 cells) Have Long-Term Persistence and Induce Du-rable Responses In Relapsed, Refractory CLL. Blood. 2013; 122: 4162.10.1182/blood.V122.21.4162.4162Search in Google Scholar

103. Woyach JA, Furman RR, Liu TM, Ozer HG, Za-patka M, Ruppert AS, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014; 370(24): 2286-94.10.1056/NEJMoa1400029414482424869598Search in Google Scholar

104. Laurenti L, De Padua L, D'Arena G, Vannata B, In-nocenti I, Tarnani M, et al. New and old monoclonal antibodies for the treatment of chronic lymphocytic leukemia. Mini Rev Med Chem. 2011; 11(6): 508-18.10.2174/13895571179584337421561405Search in Google Scholar

105. Bojarczuk K, Siernicka M, Dwojak M, Bobrowicz M, Pyrzynska B, Gaj P, et al. B-cell receptor pathway inhibitors affect CD20 levels and impair antitumor activity of anti-CD20 monoclonal antibodies. Leuke-mia. 2014; 28(5): 1163-7.10.1038/leu.2014.1224492323Search in Google Scholar

106. Kohrt HE, Sagiv-Barfi I, Rafiq S, Herman SE, Butchar JP, Cheney C, et al. Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood. 2014; 123(12): 1957-60.10.1182/blood-2014-01-547869396216924652965Search in Google Scholar

107. Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM, et al. High-throughput combinatorial scre-ening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lym-phoma cells. Proc Natl Acad Sci U S A. 2014; 111(6): 2349-54.10.1073/pnas.1311846111392602624469833Search in Google Scholar

eISSN:
1857-8985
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education