Otwarty dostęp

Corrosion Fatigue Crack Propagation Rate Characteristics for Weldable Ship and Offshore Steels with Regard to the Influence of Loading Frequency and Saltwater Temperature


Zacytuj

1. Vazquez J., Navarro C., Dominguez J. (2009). On the estimation of fatigue life in notches differentiating the phases of crack initiation and propagation. Fatigue Fract. Engng Mater. Struct., 33, 22-36.10.1111/j.1460-2695.2009.01411.xSearch in Google Scholar

2. Vosikovsky O. (1975). Fatigue crack growth in an X65 line pipe steel at low cyclic frequencies in aqueous environments, J. Engineering Materials and Technology, 97, 298304.10.1115/1.3443302Search in Google Scholar

3. Jakubowski M. (1993). Geometry factors in corrosion fatigue crack propagation. Fatigue Fract. Engng Mater. Struct, 16, 495507.10.1111/j.1460-2695.1993.tb00762.xSearch in Google Scholar

4. Miller K.J. (1982) The short crack problem. Fatigue Engng Mater, Struct, 5, 223-232.10.1111/j.1460-2695.1982.tb01250.xSearch in Google Scholar

5. Lankford J. (1982) The growth of small fatigue cracks in 7075 aluminium. Fatigue Engng Mater. Struct, 5, 233-248.Search in Google Scholar

6. Jakubowski M. (2007). A model of corrosion fatigue crack growth in ship and offshore steels. Fatigue Fract. Engng Mater. Struct., 30, 682-688.10.1111/j.1460-2695.2007.01133.xSearch in Google Scholar

7. Scott P. M., Silvester D. R. V. (1975). The influence of seawater on fatigue crack propagation in structural steel. Department of Energy, UK OSRP Technical Report 3/03.Search in Google Scholar

8. Morgan H. G., Thorpe T. W. (1981). An introduction to crack growth testing in the UK OSRP and its relevance to the design of offshore structures. Proc. Fatigue in Offshore Structures, Thomas Telford Ltd, London,pp.515.Search in Google Scholar

9. Kostienko N. A., Tatariencew W. A. (1987). Influence of overloading, stress ratio and moisture on fatigue cracks propagation resistance of cast steels. Fiz. Khim. Mekh. Mater., 23, No.2, 84-89 (in Russian).Search in Google Scholar

10. Jakubowski M. (1982). Influence of saltwater on fatigue crack growth rates in shipbuilding steels. Zeszyty Naukowe PG, No.344, 121130 (in Polish).Search in Google Scholar

11. Jakubowski M. (1986). A study crack length effect on the fatigue crack growth rate for ordinary shipbuilding steel in saltwater. 5th Intl Symp. Offshore Mechanics and Arctic Engineering, Tokyo, ASME Book No. 100194, 212217.Search in Google Scholar

12. Knight J. W. (1977). Corrosion fatigue of welded, quenched and tempered steels, Welding Research International, 7, 1738.Search in Google Scholar

13. Jakubowski M. (1993). Fatigue and corrosion fatigue crack propagation rates for two new shipbuilding steels. Marine Technology Transactions, 4, 7384 (in Polish).Search in Google Scholar

14. Zhang Y-H., Zettlemoyer N., Tubby P.J. (2012). Fatigue crack growth rates of mooring chain steels. Proc. ASME 2012 31st Intl Conf. Ocean, Offshore and Arctic Engineering, OMAE2012-84223, pp. 1-10.Search in Google Scholar

15. Hudak Jr.,S.J., Feiger J.H., Patton J.A.,(2010) The effect of loading frequency on corrosion-fatigue crack growth in high strength riser materials. Proc. ASME 2010 29th Intl Conf. Ocean, Offshore and Arctic Engineering, OMAE2010-20705, pp.1-10.Search in Google Scholar

16. Marvasti M,H., Chen W., Kania R., Worthingham R. and Van Boven G. (2010) Frequency dependence of fatigue and corrosion fatigue crack growth rate. Proc. 8th Int. Pipeline Conference, IPC2010-31007, 1-7.10.1115/IPC2010-31007Search in Google Scholar

17. Nagai K., Iwata M., Yaima H., Yamamoto Y., Fujimoto Y. (1976). Effect of cycle frequency, mean stress, temperature and cathodic protection on fatigue crack growth in 3% salt-water. J. Society of Naval Architects Japan, 140, 255261.10.2534/jjasnaoe1968.1976.140_241Search in Google Scholar

18. Nibbering J. J. W. (1983). Behaviour of mild steel under very low frequency loading in sea water. Corrosion Science,. 23, 645662.10.1016/0010-938X(83)90125-7Search in Google Scholar

19. Scott P. M., Thorpe T. W., Silvester D. R. V. (1983). Rate determining process for corrosion fatigue crack growth in ferritic steels in seawater. Corrosion Science, 23, 559575.10.1016/0010-938X(83)90119-1Search in Google Scholar

20. Horstmann M., Gregory J. K., Schwalbe K.-H. (1995).. Geometry effects on corrosion fatigue in offshore structural steels. Int. J. Fatigue, 17, 293299.10.1016/0142-1123(95)00007-GSearch in Google Scholar

21. Endo K., Komai K., Matsuoda Y. (1981). Mechanical effects of corrosion products in corrosion fatigue crack growth of a steel, Bulletin of the Japan Society of Mechanical Engineering, 24, 13191325.10.1299/jsme1958.24.1319Search in Google Scholar

22. Gallagher J. P. (1971). Corrosion fatigue crack growth rate behavior above and below KI SCC in steels. J. of Materials, 6, 941964.Search in Google Scholar

23. Thomas J. P., Wei R. P. (1992). Corrosion fatigue crack growth of steel in aqueous solutions, I: Experimental results and modelling the effects of frequency and temperature. Materials Science and Engineering, A159, 205221.10.1016/0921-5093(92)90291-8Search in Google Scholar

24. Vosikovsky O. (1978). Frequency, stress ratio and potential effects on fatigue crack growth in HY130 steel in salt water, J. Testing and Evaluation, 1978, 6, ss.175182.Search in Google Scholar

25. Barsom J. M. (1971). Mechanism of corrosion fatigue below KI SCC . Int. J. of Fracture Mechanics, 7, 165-182.10.1007/BF00183804Search in Google Scholar

26. Barsom J. M. (1971). Corrosion fatigue crack propagation below KI SCC. Engineering Fracture Mechanics, 3, 15-25.10.1016/0013-7944(71)90048-8Search in Google Scholar

27. Oberparleitner W., Schutz W. (1988). Calculation of crack growth in welded specimens under seawater conditions in order to predict fatigue life of offshore components. Werkstoffe und Korrosion, 39, 369-378, (in German).Search in Google Scholar

28. Telseren A., Doruk M. (1974). Temperature dependence of water enhanced fatigue crack growth in mild steel. Engineering Fracture Mechanics, 6, 28310.1016/0013-7944(74)90026-5Search in Google Scholar

29. Cowling M. J., Hancock J. W., Appleton R. J., Gall D. S. (1985). Fatigue crack growth in biologically active environments under realistic load sequences, Glasgow University, Project OT/F/918 Final ReportSearch in Google Scholar

30. Jakubowski M. (2002). Some problems of corrosion fatigue crack propagation in ship and offshore steels. Monographic Series, No 32, Gdansk University of Technology, 2002 (in Polish).Search in Google Scholar

31. Matocha K. (2001). The influence of water environment on fatigue crack growth behaviour of high strength low alloy steel. XVI Physical Metallurgy and Materials Conference „Advanced Materials & Technologies”, Gdansk-Jurata, Poland, Inzynieria Materialowa, 4/2001, 617-619.Search in Google Scholar

32. Wnuk M.P. (1973). Fundamentals of fracture mechanics. Skrypt No 822 AGH Krakow (in Polish)Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences